
Elements of Statistical Learning by Hastie,
Tibshirani, and Friedman
Worked Exercises: Chapter 2

Kevin O’Connor

July 1, 2018

Ex. 2.1

Suppose each of K-classes has an associated target tk, which is a vector of all zeroes,
except a one in the kth position. Show that classifying to the largest element of ŷ
amounts to choosing the closest target, mink ‖tk − ŷ‖, if the elements of ŷ sum to one.

Proof. Here I will use ŷk to denote the kth component of ŷ. To rephrase the question,
we want to prove that

argmaxk ŷk = argmink ‖tk − ŷ‖

Note first that we can write the squared distance from tk to ŷ as

‖tk − ŷ‖2 = ŷ21 + ...+ (1− ŷk)2 + ...+ ŷ2K

Now fix i such that maxk ŷk = ŷi and 1 6 j 6 K, j 6= i. Then

‖ti − ŷ‖2 − ‖tj − ŷ‖2 = (1− ŷi)2 + ŷ2j − ŷ2i − (1− ŷj)2

= 1− 2ŷi + ŷ2i + ŷ2j − ŷ2i − 1 + 2ŷj − ŷ2j

= 2(ŷj − ŷi)

6 0

So ‖ti − ŷ‖2 6 ‖tj − ŷ‖2, ∀j 6= i, which gives ‖ti − ŷ‖ 6 ‖tj − ŷ‖, ∀j 6= i. Thus we have

argmaxk ŷk = ŷi = argmink ‖tk − ŷ‖

Assuming the maximum element of ŷ is unique, this gives us the result. �

1

Ex. 2.2

Show how to compute the Bayes decision boundary for the simulation example in Figure
2.5.

Solution. First I’ll explain the model the simulation uses. 10 means, m1, ...,m10, are
generated for each class (Blue and Orange) from distributions,

N
([

1
0

]
, I2

)
and N

([
0
1

]
, I2

)
respectively. Then 100 observations are drawn from each class by choosing a mean, mk,
from the 10 corresponding to its class, uniformly at random and then generating a point
from the distribution, N (mk, I2/5). Now fix an arbitrary data point, x. Using Bayes
theorem, we have

P(Orange|x) =
P(x|Orange)P(Orange)

P(x)

The classes Blue and Orange occur with equal frequency so P(Blue) = P(Orange) =
1/2. At this point, P(x|Orange) is not directly computable due to the unobserved mean
on which they depend. But we can further expand these probabilities to make this
dependence explicit. Note that we have three latent variables at work here: k, mk, and
color.

P(x|Orange) =

∞∫
−∞

∞∫
−∞

10∑
k=1

P(x,mk, k|Orange)dmk

=

∞∫
−∞

∞∫
−∞

10∑
k=1

P(x|mk, k, Orange)P(mk|k,Orange)P(k|Orange)dmk

=

∞∫
−∞

∞∫
−∞

10∑
k=1

[(
5

2π
exp

{
− 5

2
(x−mk)

T (x−mk)

})
×(

1
2π

exp

{
−1

2

(
mk −

[
0
1

])T (
mk −

[
0
1

])})](
1
10

)
dmk

=

∞∫
−∞

∞∫
−∞

[(
5

2π
exp

{
− 5

2
(x−mk)

T (x−mk)

})
×(

1
2π

exp

{
−1

2

(
mk −

[
0
1

])T (
mk −

[
0
1

])})]
dmk

Then the boundary is found by setting P(x|Orange) = 1/2 and solving for x. �

Ex. 2.3

Derive equation (2.24).

2

Proof. To remind ourselves of what equation (2.24) is, it says that for N data points
uniformly distributed over a p-dimensional unit ball, the median distance to the closest
data point is given by

d(p,N) =

(
1− 1

2

1/N
)1/p

First suppose that the volume contained in a p-dimensional ball of radius r is given by

V (r) = Cpr
p

for some constant Cp. Now since the data points are uniformly distributed, their cdf
depends on the volume of the ball. What do I mean by this? For a single point, x,

P(‖x‖ 6 r) =
V (r)

V (1)
1(0,1)(r) + 1[1,∞)(r) = rp1(0,1)(r) + 1[1,∞)(r)

Now let’s restrict our consideration to the interesting case when r ∈ (0, 1). Then we have

P(‖x‖ > r) = 1− rp

Assuming the data points are drawn independently, this gives us the joint probability,

P
(

min
i
‖xi‖ > r

)
= P (‖xi‖ > r, ∀1 6 i 6 N) =

N∏
i=1

P(‖xi‖ > r) = (1− rp)N

This gives us the distribution of distances from the origin to the closest data point. We
are asked for the median of this distribution so all we need to do is set it equal to 1/2
and solve for r.

(1− rp)N = 1/2 =⇒ r =

(
1− 1

2

1/N
)1/p

This gives us the solution. �

Ex. 2.4

The edge effect problem discussed on page 23 is not peculiar to uniform sampling from
bounded domains. Consider inputs drawn from a spherical multinormal distribution,
X ∼ N (0, Ip). The squared distance from any sample point to the origin has a χ2

p

distribution with mean p. Consider a prediction point x0 drawn from this distribution,
and let a = x0/‖x0‖ be an associated unit vector. Let zi = aTxi be the projection of each
of the training points on this direction.

Show that the zi are distributed N (0, 1) with expected squared distance from the
origin 1, while the target point has expected squared distance p from the origin.

Hence for p = 10, a randomly drawn test point is about 3.1 standard deviations
from the origin, while all the training points are on average one standard deviation along
direction a. So most prediction points see themselves as lying on the edge of the training
set.

3

Proof. The projection characterization of the multinormal distribution says that a ran-
dom variable X is multinormal if and only if all of its 1-dimensional projections have a
univariate normal distribution. Thus zi = aTxi is normally distributed. Since the normal
distribution is characterized by its mean and variance, we need only compute the mean
and variance of zi.

Ezi = E[aTxi] = aTExi = at0p = 0

Var(zi) = Var(aTxi) = aT Var(xi)a = aT Ipa = aTa = 1

Thus zi = aTxi ∼ N (0, 1). It follows from this that Ez2i = Var(zi) + (Ezi)2 = 1. On the
other hand, as mentioned xTi xi ∼ χ2

p so E[‖xi‖2] = E[xTi xi] = p. �

Ex. 2.5

(a) Derive equation (2.27). The last line makes use of (3.8) through a conditioning
argument.

Proof. To remind ourselves of the situation in question here, we have a linear model,

Y = XTβ + ε, ε ∼ N (0, σ2)

and are interested in the expected prediction error (EPE) at a point, x0. Equation
(2.27) states that

EPE(x0) = σ2 + Eτ
[
xT0 (XTX)−1x0

]
σ2

where τ is the training set. The authors give us an outline of the derivation in
the chapter but we will walk through each line of the derivation and explain where
things come from. First we have

EPE(x0) = E
[
Eτ
[
(y0 − ŷ0)2

]
|x0
]

= Ey0|x0
[
Eτ
[
(y0 − ŷ0)2

]]
which is just the definition of the expected prediction error at x0 and some alternate
notation. Now we will add and subtract Eτ ŷ0 in the inner expectation.

Eτ [(y0 − ŷ0)2] = Eτ [(y0 − Eτ ŷ0 + Eτ ŷ0 − ŷ0)2]

= Eτ [(y0 − Eτ ŷ0)2] + 2Eτ [(y0 − Eτ ŷ0)(Eτ ŷ0 − ŷ0)]

+Eτ [(Eτ ŷ0 − ŷ0)2]

= Eτ [(y0 − Eτ ŷ0)2] + 2(y0 − Eτ ŷ0)Eτ [(Eτ ŷ0 − ŷ0)]

+Eτ [(Eτ ŷ0 − ŷ0)2]

= (y0 − Eτ ŷ0)2 + Eτ [(Eτ ŷ0 − ŷ0)2]

4

where we used the fact above that y0 ⊥⊥ τ . Now add and subtract Ey0 within the
first term.

(y0 − Eτ ŷ0)2 = (y0 − Ey0 + Ey0 − Eτ ŷ0)2

= (y0 − Ey0)2 + 2(y0 − Ey0)(Ey0 − Eτ ŷ0) + (Ey0 − Eτ ŷ0)2

Which gives,

E [(y0 − Eτ ŷ0)2|x0] = E [(y0 − Ey0)2|x0] + 2(Ey0 − Eτ ŷ0)E [y0 − Ey0|x0]

+(Ey0 − Eτ ŷ0)2

= Var(y0|x0) + (Ey0 − Eτ ŷ0)2

We can combine these steps to get

EPE(x0) = E
[
(y0 − Eτ ŷ0)2 + Eτ [(Eτ ŷ0 − ŷ0)2]

∣∣∣∣x0]
= Var(y0|x0) + (Ey0 − Eτ ŷ0)2 + E [Eτ [(Eτ ŷ0 − ŷ0)2] |x0]

= Var(y0|x0) + (Ey0 − Eτ ŷ0)2 + Eτ [(Eτ ŷ0 − ŷ0)2]

which is the second line in the derivation. The third line follows by substituting
using definitions of variance and bias,

EPE(x0) = Var(y0|x0) + Bias(ŷ0)
2 + Varτ (ŷ0)

To find the last line, we consider each of these terms individually. It is easy to see
from our model that

Var(y0|x0) = Var(xT0 β + ε0|x0) = Var(ε0) = σ2

and

Eŷ0 = E[xT0 β̂] = ExT0Eβ̂ = ExT0 β = Ey0

so Bias(ŷ0)
2 = 0. Finally, the last term can be found using the decomposition of ŷ0

given in the book,

ŷ0 = xT0 β +
N∑
i=1

li(x0)εi = xT0 β + xT0 (XTX)−1XT ε

5

Then the variance is computed as

Varτ (ŷ0) = Varτ
(
xT0 β + xT0 (XTX)−1XT ε

)
= Varτ

(
xT0 (XTX)−1XT ε

)
= xT0 Varτ

(
(XTX)−1XT ε

)
x0

= xT0Eτ
[
(XTX)−1XT εεTX(XTX)−1

]
x0

= xT0Eτ
[
Eτ
[
(XTX)−1XT εεTX(XTX)−1

∣∣∣∣X]]x0
= xT0Eτ

[
(XTX)−1XT (EτεεT)X(XTX)−1

]
x0

= xT0Eτ
[
(XTX)−1XTσ2IX(XTX)−1

]
x0

= xT0Eτ (XTX)−1x0σ
2

= Eτ
[
xT0 (XTX)−1x0σ

2
]

Thus we have the desired result,

EPE(x0) = σ2 + Eτ
[
xT0 (XTX)−1x0σ

2
]

�

(b) Derive equation (2.28), making use of the cyclic property of the trace operator
[trace(AB) = trace(BA)], and its linearity (which allows us to interchange the
order of trace and expectation).

Proof. Taking expectation of the result from part (a), we have

Ex0 [EPE(x0)] = Ex0
[
Eτ
[
xT0 (XTX)−1x0

]]
σ2 + σ2

Now use the fact that x0 ⊥⊥ τ and (XTX)−1 ≈ Cov(X)−1/N , to get

Ex0 [EPE(x0)] = Ex0
[
xT0 Cov(X)−1x0

]
σ2/N + σ2

Then writing this as an expectation of a trace (of a 1 × 1 matrix) and using the
cyclic property, we get the second line of the derivation.

Ex0 [EPE(x0)] = Ex0
[
tr
(
xT0 Cov(X)−1x0

)]
σ2/N + σ2

= Ex0
[
tr
(
Cov(X)−1x0x

T
0

)]
σ2/N + σ2

= tr
(
Ex0

[
Cov(X)−1x0x

T
0

])
σ2/N + σ2

= tr
(
Cov(X)−1Ex0

[
x0x

T
0

])
σ2/N + σ2

= tr (Cov(X)−1Cov(x0))σ
2/N + σ2

6

Now for the last line, we need only prove that

tr
(
Cov(X)−1Cov(x0)

)
= p

But assuming X
d
= x0, we have

tr
(
Cov(X)−1Cov(x0)

)
= tr(Ip) = p

This gives us

Ex0 [EPE(x0)] = σ2(p/N) + σ2

which completes the proof. �

Ex. 2.6

Consider a regression problem with inputs xi and outputs yi, and a parametrized model
fθ(x) to be fit by least squares. Show that if there are observations with tied or identical
values of x, then the fit can be obtained from a reduced weighted least squares problem.

Proof. For notation’s sake, let us think about the data falling into K groups where the
inputs are equal for all data in a given group. We will denote the kth group mean of the
outputs as yk· and size of the kth group as nk. We begin by writing the residual sum of
squares for a test model, fθ̂(x) and add and subtract the groups means.

RSS =
N∑
i=1

(yi − fθ̂(xi))2

=
N∑
i=1

(yi − yi· + yi· − fθ̂(xi))2

=
N∑
i=1

(yi − yi·)2 + 2
N∑
i=1

(yi − yi·)(yi· − fθ̂(xi)) +
N∑
i=1

(yi· − fθ̂(xi))2

=
N∑
i=1

(yi − yi·)2 + 2
K∑
k=1

(yk· − fθ̂(xk))
nk∑
i=1

(yi − yk·) +
K∑
k=1

nk(yk· − fθ̂(xk))2

At this point, we recognize that the second term is zero since
∑nk

i=1(yi − yk·) = 0, ∀k.

Furthermore, the first term is a constant and does not depend on θ̂. So in minimizing the
RSS, we may ignore this term. Thus we may rewrite this as a reduced weighted least
squares problem with RSS given by,

RSS =
K∑
k=1

nk(yk· − fθ̂(xk))
2

�

7

Ex. 2.7

Suppose we have a sample of N pairs xi, yi drawn i.i.d. from the distribution characterized
as follows:

xi ∼ h(x), the design density

yi = f(xi) + εi, f is the regression function

εi ∼ (0, σ2) (mean zero, variance σ2)

We construct an estimator for f linear in the yi,

f̂(x0) =
N∑
i=1

li(x0;X)yi,

where the weights li(x0;X) do not depend on the yi, but do depend on the entire training
sequence of xi, denoted here by X .

(a) Show that linear regression and k-nearest-neighbor regression are members of this
class of estimators. Describe explicitly the weights li(x0;X) in each of these cases.

Proof. In linear regression, f(x) = xTβ and we use the estimator,

f̂(x0) = xT0X(XTX)−1XTY =
n∑
i=1

(X(XTX)−1XTx0)iyi

so li(x0,X) = (X (X TX)−1X Tx0)i. In k-nearest neighbor regression we use,

f̂(x0) =
1

k

n∑
i=1

1
(
‖x0 −Xi‖ 6 ‖x0 −X(k)‖

)
so li(x0,X) = 1

(
‖x0 −Xi‖ 6 ‖x0 −X(k)‖

)
. �

(b) Decompose the conditional mean-squared error

EY|X (f(x0)− f̂(x0))
2

into a conditional squared bias and a conditional variance component. Like X ,Y
represents the entire training sequence of yi.

Proof. The usual trick of adding and subtracting the (conditional) expectation gives
us the result.

EY|X
[
(f(x0)− f̂(x0))

2
]

= EY|X
[(
f(x0)− EY|X [f(x0)]

+EY|X [f(x0)]− f̂(x0)

)2
]

= EY|X
[(
f(x0)− EY|X [f(x0)]

)2]
+
(
EY|X [f(x0)]− f̂(x0)

)2
= Var (f(x0)|X) + Bias(f̂(x0)|X)2

�

8

(c) Decompose the (unconditional) mean-squared error

EY,X (f(x0)− f̂(x0))
2

into a squared bias and a variance component.

Proof. Repeating the steps above with the unconditional expectation gives us

EY,X
[
(f(x0)− f̂(x0))

2
]

= EY,X
[
(f(x0)− f̂(x0))

2
]

+
(
EY,X [f(x0)]− f̂(x0)

)2
= Var(f(x0)) + Bias(f̂(x0))

2

�

(d) Establish a relationship between the squared biases and variance in the above two
cases.

Proof. Suppose we have a conditional density, fY|X (x, y) and thus a joint density,

fY|X (x, y)h(x). Now writing f̂(x0;X ,Y) to make the dependence on the training
data explicit, we can write the conditional and unconditional MSE as integrals.

EY|X
[
(f(x0)− f̂(x0))

2
]

=

∫
(f(x0)− f̂(x0;X ,Y))2fY|X (X ,Y)dY

EY,X
[
(f(x0)− f̂(x0))

2
]

=

∫ ∫
(f(x0)− f̂(x0;X ,Y))2fY|X (X ,Y)h(X)dYdX

From this we can see that

EY,X
[
(f(x0)− f̂(x0))

2
]

=

∫
EY|X

[
(f(x0)− f̂(x0))

2
]
h(X)dX

= EX
[
EY|X

[
(f(x0)− f̂(x0))

2
]]

Using the results from parts (b) and (c), we have

Var(f(x0)) + Bias(f̂(x0))
2 = EX

[
Var(f(x0)|X) + Bias(f̂(x0)|X)2

]
�

Ex. 2.8

Compare the classification performance of linear regression and k-nearest neighbor clas-
sification on the zipcode data. In particular, consider only the 2’s and 3’s, and k =
1,3,5,7 and 15. Show both the training and test error for each choice. The zipcode data
are available from the book website www-stat.stanford.edu/ElemStatLearn.

Solution: First we read in the data and subset to only 2’s and 3’s, then subset to just
the desired variables.

9

Reading data.
train <- read.table(file.path(getwd(), "zipcode_train"))
test <- read.table(file.path(getwd(), "zipcode_test"))
Filtering to 2’s and 3’s and desired variables.
train <- train[train[,1] %in% c(2, 3),]
test <- test[test[,1] %in% c(2, 3),]
pixels <- c("V1", "V3", "V5", "V7", "V15")
train <- train[,pixels]
test <- test[,pixels]

Now we fit the two models. For comparison’s sake, we will use K = 5. Though, we
could hypothetically improve the error rate by choosing an optimal K through cross-
validation.

Running linear regression.
lin.mod <- lm(train[,1] ˜ ., data=train[,-1])
weighted.ave <- predict(lin.mod, test[,2:5])
pred.vals.lin <- ifelse(weighted.ave>2.5, 3, 2)
error.rate.lin <- mean(pred.vals.lin!=test[,1])

Running K-nearest neighbors.
require(class)
pred.vals.knn <- knn(train[,2:5], test[,2:5], train[,1], k=5)
error.rate.knn <- mean(pred.vals.knn!=test[,1])

Comparing the two error rates, we observe

> print(error.rate.lin)
[1] 0.3956044
> print(error.rate.knn)
[1] 0.4038462

So the performances of the two are comparable, with the linear model performing slightly
better than K-nearest neighbors here.

Ex. 2.9

Consider a linear regression model with p parameters, fit by least squares to a set of
training data (x1, y1), ..., (xN , yN) drawn at random from a population. Let β̂ be the
least squares estimate. Suppose we have some test data (x̃1, ỹ1), ..., (x̃M , ỹM) drawn at
random from the same population as the training data. If Rtr(β) = 1

N

∑N
1 (yi − βTxi)2

and Rte(β) = 1
M

∑M
1 (ỹi − βT x̃i)2, prove that

E[Rtr(β̂)] 6 E[Rte(β̂)]

where the expectations are over all that is random in each expression.

Proof. To make notation simpler, we start by writing the model in matrix notation,

y = Xβ + ε

10

which allows us to rewrite Rtr and Rte as

Rtr(β̂) =
1

N
(y −Xβ̂)T (y −Xβ̂) =

1

N

(
yTy − 2yTXβ̂ + β̂TXTXβ̂

)
Rte(β̂) =

1

M
(ỹ − X̃β̂)T (ỹ − X̃β̂) =

1

M

(
ỹT ỹ − 2ỹT X̃β̂ + β̂T X̃T X̃β̂

)
Now using the fact that the data are drawn independently from the same populations,
we have

(i) E
[
1
N
yTy
]

= E
[

1
M
ỹT ỹ
]

(ii) E
[
1
N
yTX

]
= E

[
1
M
ỹT X̃

]
(iii) E

[
1
N
XTX

]
= E

[
1
M
X̃T X̃

]
Now consider ERte(β̂)−ERtr(β̂). To simplify this, lets take this difference term by term.
We can see right away that (i) shows that the first terms will cancel. Now let’s think
about the second terms. Using the independence of β̂ and (X̃, ỹ) and applying (ii), we
have

− 2

M
E
[
ỹT X̃β̂

]
= − 2

M
E
[
ỹT X̃

]
Eβ̂ = − 2

M

(
M

N
E[yTX]

)
β = − 2

N
βTE[XTX]β

Furthermore,

− 2
N
E[yTXβ̂] = − 2

N
E
[
yTX(XTX)−1XTy

]
=− 2

N
E
[
(Xβ + ε)TX(XTX)−1XT (Xβ + ε)

]
=− 2

N

(
βTE[XTX]β + E[εTX(XTX)−1XT ε]

)
Thus the difference between the second terms is

− 2

M
E
[
ỹT X̃β̂

]
+

2

N
E
[
yTXβ̂

]
=

2

N
E
[
εTX(XTX)−1XT ε

]
Now we consider the third terms. Again using independence and applying (iii),

1

M
E
[
β̂T X̃T X̃β̂

]
= βTE

[
1

M
X̃T X̃

]
β = βTE

[
1

N
XTX

]
β =

1

N
βTE[XTX]β

Furthermore, we have

1
N
E
[
β̂TXTXβ̂

]
= 1

N
E
[
(Xβ + ε)TX(XTX)−1XTX(XTX)−1XT (Xβ + ε)

]
= 1

N
E
[
(Xβ + ε)TX(XTX)−1XT (Xβ + ε)

]
= 1

N

(
E
[
βTXTXβ

]
+ E

[
εTX(XTX)−1XT ε

])
= 1

N

(
βTE[XTX]β + E

[
εTX(XTX)−1XT ε

])
11

Then the difference between the third terms is

1

M
E
[
β̂T X̃T X̃β̂

]
− 1

N
E
[
β̂TXTXβ̂

]
= − 1

N
E
[
εTX(XTX)−1XT ε

]
Now we can combine these terms to see that

ERte(β̂)− ERtr(β̂) = 2
N
E
[
εTX(XTX)−1XT ε

]
− 1

N
E
[
εTX(XTX)−1XT ε

]
= 1

N
E
[
εTX(XTX)−1XT ε

]
= 1

N
E
[(

(XTX)−1/2XT ε
)T (

(XTX)−1/2XT ε
)]

> 0

So we have the final result,

ERte(β̂) > ERtr(β̂)

�

12

