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Ch 2: Single-Parameter Models

2.4: Informative Prior Distributions

Let F be a class of sampling distributions, F = {p(y|θ)}, and P be a class of prior distributions.
Then P is conjugate for F if p(θ|y) ∈ P, ∀p(y|θ) ∈ F , p(θ) ∈ P.

To avoid choosing P as class of all distributions, we refer to natural conjugate families
taking P to be a class where all members have same functional form. We like conjugate families
because they are easier to work with and tend to be more interpretable.

Exponential families are conjugate to one another,

p(y|θ) ∝ g(θ)n exp
{
φ(θ)T t(y)

}
p(θ) ∝ g(θ)η exp

{
φ(θ)T ν

}
p(θ|y) ∝ g(θ)n+η exp

{
φ(θ)T (ν + t(y))

}
2.5: Normal Distribution with Known Variance

The posterior predictive distribution gives distribution of future observation given observed
data.

p(ỹ|y) =

∫
p(ỹ|θ)p(θ|y)dθ

For normal sampling distribution with known variance, conjugate prior given by θ ∼ N (µ0, τ
2
0 ).

2.6: Other Standard Single-parameter Models

For normal sampling distribution with unknown variance and known mean, conjugate prior
given by σ2 ∼ IG(α, β).

p(σ2) ∝ (σ2)−(α+1)e−β/σ
2

For Poisson, conjugate prior given by λ ∼ Gamma(α, β).

For exponential (special case of Gamma), θ ∼ Gamma(α, β) is conjugate.

2.8: Noninformative Prior Distributions

A prior is prior if it doesn’t depend on data and integrates to 1. If the prior integrates to any
positive finite value it is called an unnormalized density. For some improper priors, one may
get a valid posterior distribution.
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Jeffreys’ Invariance Principle: any rule for determining the prior density should yield an
equivalent result if applied to the one-to-one transformed parameter. This leads to the definition
of the noninformative prior density as p(θ) ∝

√
J(θ) where J(θ) is Fisher information,

J(θ) = E
[(

d

dθ
log p(y|θ)

)2∣∣∣∣θ] = −E
[
d2

dθ2
log p(y|θ)

∣∣∣∣θ]
Jeffreys’ principle doesn’t extend that well to multiparameter models. When there are many
parameters, tend to abandon noninformative priors in favor of hierarchical models.

A pivotal quantity is a function of the data and parameter whose distribution does not
depend on the data or the parameter.

Difficulty with noninformative prior distributions is that one must still choose what kind of
noninformative prior to use. But also seems inappropriate to establish a single universal method
of finding noninformative priors as different situations warrant different approaches.

2.9: Weakly Informative Prior Distributions

Prior is weakly informative if it is proper but set up to provide information intentionally
weaker than whatever prior knowledge is available.

We like weakly informative priors because they provide just enough information to ensure that
the posterior makes sense.

Two potential methods for constructing weakly informative priors:

1. Start with a noninformative prior then add enough information to make posterior reason-
able.

2. Start with strong, highly informative prior and broaden it to account for uncertainty.

Ch 3: Introduction to Multiparameter Models

Nuisance parameters are those which are not of immediate interest.

3.1: Averaging over Nuisance Parameters

Suppose θ = (θ1, θ2) and θ2 is a nuisance parameter. Then we can write

p(θ1|y) =

∫
p(θ1, θ2|y)dθ2 =

∫
p(θ1|θ2, y)p(θ2|y)dθ2

Noninformative prior for Normal likelihood can be given by

p(µ, σ2) ∝ (σ2)−1

3.3: Normal Data with a Conjugate Prior

For y|µ, σ2 ∼ N (µ, σ2) with both µ and σ2 unknown, need a prior for (µ, σ2). Conjugate prior
given by

(µ, σ2) ∼ N-Invχ2(µ0, σ
2
0/κ0; ν0, σ

2
0)
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where

σ2 ∼ Invχ2(ν0, σ
2
0)

µ|σ2 ∼ N (µ0, σ
2
0/κ0)

Then marginal posteriors for µ and σ2 are t and Invχ2 respectively.

3.4: Multinomial Model for Categorical Data

For multinomial sampling distribution, conjugate prior is Dirichlet,

p(θ|α) ∝
k∏
j=1

θ
αj−1
j ,

k∑
j=1

θj = 1

3.5: Multivariate Normal Model

With known Σ and unknown µ, conjugate prior is µ ∼ N (µ0,Λ0).

With both µ and Σ unknown, conjugate prior given by

Σ ∼ Inv-Wishartν0(Λ−1
0 )

µ|Σ ∼ N (µ0,Σ/κ0)

Noninformative priors for MVN:

1. Setting Σ ∼ Inv-Wishartd+1(I) corresponds to each correlation in Σ having a marginally
uniform distribution.

2. Σ ∼ Inv-Wishartd−1(I) gives multivariate Jeffreys prior,

p(µ,Σ) ∝ |Σ|−(d+1)/2

which corresponds to letting κ0 → 0, ν0 → −1, and |Λ0| → 0.
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