
Notes for Machine Learning: A Probabilistic Perspective by

Kevin P. Murphy

Kevin O’Connor

Chapter 13: Sparse Linear Models

Goal: select sets of relevant variables simultaneously.

13.2: Bayesian Variable Selection

Suppose we have latent variables, γj = 1(feature j relevant). Then compute posterior of γ =
(γ1, ..., γD),

p(γ|D) =
exp {−f(γ)}∑
γ′ exp {−f(γ)}

where f(γ) = −
(

log p(D|γ) + log p(γ)

)
Two ways of estimating γ:

1. MAP: γ̂ = argmax p(γ|D) = argmin f(γ). However this is often not representative of full
posterior mass.

2. Median model: γ̂ = {j : p(γj = 1|D) > 0.5}.

13.2.1: Spike and Slab Model

Let π0 be the probability that a feature is relevant. Then define the hyper-prior on γ,

p(γ) =

D∏
j=1

Ber(γj |π0) = π
‖γ‖0
0 (1− π0)D−‖γ‖0

Define the prior on wj

p(wj |σ2, γj) =

{
δ0(wj) γj = 0
N (wj |0, σ2σ2w) γj = 1

Then assuming Gaussianity, we can write the likelihood in terms of only features with γj = 1
(denoted by the subscript, γ).

p(D|γ) =

∫∫
N (y|Xγwγ , σ

2IN)N (wγ |0γ , σ2σ2wIγ)p(σ2)dwγdσ
2

If the marginal likelihood is intractable, can approximate with BIC.

log p(D|γ) ≈ log p(y|X, ŵγ , σ2)−
‖γ‖0

2
logN

log p(γ|D) ≈ log p(y|X, ŵγ , σ2)−
‖γ‖0

2
logN − λ‖γ‖0 + const

where ŵγ is ML or MAP estimate based on Xγ and λ = log((1−π0)/π0) (controls the sparsity).

1

13.2.2: Bernoulli-Gaussian Model

Also called binary mask model.

yi|xi, w, γ, σ2 ∼ N
(∑

j

γjwjxij , σ
2

)

γj ∼ Ber(π0)

wj ∼ N (0, σ2w)

Difference between this and spike and slab:

1. Don’t integrate out irrelevant coefficients.

2. γj → y ← wj vs. γj → wj → y.

13.3: l1 Regularization

Using discrete priors like γj ∈ {0, 1} can cause computation problems with finding the posterior
mode. So we replace such priors with continuous ones that encourage sparsity. For example,
Laplace prior

p(w|λ) ∝
D∏
j=1

exp {−λ|wj |}

PNLL(w) = NLL(w) + λ‖w‖1
LASSO solution for regression vs. Ridge solution.

ŵLASSO
k = sign(ŵOLS

k)

(
|ŵOLS
k | − λ

2

)
+

ŵRIDGE
k =

ŵOLS
k

1 + λ

13.3.4: Regularization Path

As we increase λ, ŵ(λ) gets sparser. Can visualize this by plotting ŵj(λ) vs λ, called regular-
ization path. Note that active set of non-zero coefficients only changes at some finite number
of critical points. Gives rise to the LARS algorithm which is roughly as efficient as OLS.

13.3.5: Model Selection

We call a method which can recover the true model when N → ∞, model selection con-
sistent. We usually choose λ for the LASSO via cross validation to maximize predictive op-
timality. But this does not result in model selection consistency. Can make l1 regularization
more robust to small perturbations of the data by using Bayesian l1 regularization or LASSO
on bootstrapped data.

13.4: l1 Regularization: Algorithms

13.4.1: Coordinate Descent

Idea: optimize coordinates one-by-one.

w∗j = argminz f(w + zej)− f(w)

Can either cycle through each coordinate or select each at random.

2

13.5: l1 Regularization: Extensions

13.5.1: Group LASSO

Idea: Encourage sparsity of groups of coefficients.

J(w) = NLL(w) +
G∑
g=1

λg‖wg‖2 where ‖wg‖2 =

√∑
j∈g

w2
j

Note that this differs from Ridge regression as we use ‖wg‖2 rather than ‖wg‖22.

13.5.2: Fused LASSO

Idea: want neighboring coefficients to be close to one another.

J(w, λ1, λ2) =
N∑
i=1

(yi − wi)2 + λ1

N∑
i=1

|wi|+ λ2

N−1∑
i=1

|wi+1 − wi|

Can also generalize this beyond simple chain neighbor structures.

13.5.3: Elastic Net

Idea: Combine Ridge and LASSO.

J(w, λ1, λ2) = ‖y −Xw‖2 + λ2‖w‖22 + λ1‖w‖1

Chapter 14: Kernels

14.1: Introduction

For some complex objects, not clear how to model them without assuming some generative
model on their features. But if we have a notion of similarity between objects, we can use
kernel methods.

14.2: Kernel Functions

Kernel is some function κ : X × X → R. Typically symmetric and non-negative.

14.2.1: RBF Kernels

A radial basis function (RBF) is one that only depends on ‖x− x′‖. Gives rise to the RBF
kernel,

κ(x, x′) = exp

{
−‖x− x

′‖2

2σ2

}
Squared-exponential or Gaussian kernel,

κ(x, x′) = exp

{
−1

2
(x− x′)TΣ−1(x− x′)

}
14.2.2: Kernels for Comparing Documents

Cosine similarity,

κ(xi, xi′) =
xTi xi′

‖xi‖2‖xi′‖2
Could also transform with TF-IDF then get cosine similarity.

3

14.2.3: Mercer (Positive Definite) Kernels

Gram matrix, K, has Kij = κ(xi, xj). If K positive definite for any choice of inputs, called
a Mercer kernel. Mercer kernels are nice because we can use Mercer’s theorem which uses
K = UTΛU = (Λ1/2U)T (UΛ1/2) to write κ(x, x′) = φ(x)Tφ(x′). Thus there is some function φ
such that κ is an inner-product in the embedded space.

14.2.6: String Kernels

κ(x, x′) =
∑
s∈A∗

wsφs(x)φs(x
′)

where φs(x) is number of times s occurs as substring of x, ws > 0, and A∗ is set of all strings
from alphabet A.

14.3: Using Kernels inside GLMs

14.3.1: Kernel Machines

A kernel machine is a GLM where input vector has the form

φ(x) = (κ(x, µ1), . . . , κ(x, µK))

for some K centroids µ1, . . . , µK .

14.4: Kernel Trick

Kernel trick: Instead of defining a feature vector in terms of kernels as above, just work with
original inputs and replace inner-products with kernels.

14.4.1: Kernelized Nearest-Neighbors

Observe that

‖xi − xj‖22 = 〈xi, xi〉+ 〈xj , xj〉 − 2〈xi, xj〉

So we can replace all of these inner products with kernels.

14.4.4: Kernel PCA

Find principal component projections in lower dimensional non-linear embedding.

14.5: SVMs

Consider l2-regularized empirical risk function,

J(w, λ) =

N∑
i=1

L(yi, ŷi) + λ‖w‖2

Idea: promote sparsity via L rather than the penalty term.

4

14.5.1: SVMs for Regression

(Vapnik) Epsilon insensitive loss function

Lε(y, ŷ) =

{
0 |y − ŷ| < ε
|y − ŷ| − ε otherwise

So it doesn’t penalize you if you are within ε of the target. Can formulate constrained opti-
mization problem with this loss as

J = C
N∑
i=1

(ξ+i − ξ
−
i) +

1

2
‖w‖2

where ξ+i , ξ
−
i are slack variables such that

yi 6 f(xi) + ε+ ξ+i yi > f(xi)− ε− ξ−i
and ŷ = f(xi) = wTxi +w0, constrained to ξ+i > 0, ξ−i > 0. Gives standard quadratic program
with 2N +D + 1 variables, yielding solution,

ŵ =
∑
i

αixi αi > 0

with sparse α. Then can kernelize as

ŷ(x) = ŵ0 +
∑
i

αiκ(xi, x)

14.5.2: SVMs for Classification

Hinge loss: let y ∈ {0, 1} then define

Lhinge(y, f(x)) = (1− yf(x))+

Then write as constrained optimization problem,

min
w,w0,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi s.t. ξi > 0, yi(x
T
i w + w0) > 1− ξi, i = 1, ..., N

Again we get a solution of the form

ŵ =
∑
i

αixi

and thus after kernelizing,

ŷ(x) = sign

(
ŵ0 +

N∑
i=1

αiκ(xi, x)

)

14.5.2.2: The Large Margin Principle

Can be shown that SVM objective is maximizing distance of decision boundary from support
vectors.

14.7: Kernels for Building Generative Models

Smoothing kernel, κ : X → R satisfies∫
κ(x)dx = 1,

∫
xκ(x)dx = 0,

∫
x2κ(x)dx > 0

5

14.7.2: Kernel Density Estimator (KDE)

Also known as Parzen window estimator. Use kernel with bandwidth h to estimate density
as

p̂(x) =
1

N

N∑
i=1

κh(x− xi)

14.7.4: Kernel Regression

Goal: compute f(x) = E[y|x]. Can use KDE to approximate joint density,

p(x, y) ≈ 1

N

N∑
i=1

κh(x− xi)κh(y − yi)

Then

f(x) =

∑N
i=1 κh(x− xi)yi∑N
i=1 κh(x− xi)

Also called Nadarya-Watson model.

6

