Notes for Machine Learning: A Probabilistic Perspective by Kevin P. Murphy

Kevin O'Connor

Chapter 13: Sparse Linear Models

Goal: select sets of relevant variables simultaneously.

13.2: Bayesian Variable Selection

Suppose we have latent variables, $\gamma_j = 1$ (feature j relevant). Then compute posterior of $\gamma = (\gamma_1, ..., \gamma_D)$,

$$p(\gamma|\mathcal{D}) = \frac{\exp\left\{-f(\gamma)\right\}}{\sum_{\gamma'} \exp\left\{-f(\gamma)\right\}} \quad \text{where} \quad f(\gamma) = -\left(\log p(\mathcal{D}|\gamma) + \log p(\gamma)\right)$$

Two ways of estimating γ :

- 1. MAP: $\hat{\gamma} = \operatorname{argmax} p(\gamma | \mathcal{D}) = \operatorname{argmin} f(\gamma)$. However this is often not representative of full posterior mass.
- 2. Median model: $\hat{\gamma} = \{j : p(\gamma_j = 1|\mathcal{D}) > 0.5\}.$

13.2.1: Spike and Slab Model

Let π_0 be the probability that a feature is relevant. Then define the hyper-prior on γ ,

$$p(\gamma) = \prod_{j=1}^{D} \operatorname{Ber}(\gamma_j | \pi_0) = \pi_0^{\|\gamma\|_0} (1 - \pi_0)^{D - \|\gamma\|_0}$$

Define the prior on w_j

$$p(w_j|\sigma^2, \gamma_j) = \begin{cases} \delta_0(w_j) & \gamma_j = 0\\ \mathcal{N}(w_j|0, \sigma^2\sigma_w^2) & \gamma_j = 1 \end{cases}$$

Then assuming Gaussianity, we can write the likelihood in terms of only features with $\gamma_j = 1$ (denoted by the subscript, γ).

$$p(\mathcal{D}|\gamma) = \iint \mathcal{N}(y|X_{\gamma}w_{\gamma}, \sigma^{2}I_{N})\mathcal{N}(w_{\gamma}|0_{\gamma}, \sigma^{2}\sigma_{w}^{2}I_{\gamma})p(\sigma^{2})dw_{\gamma}d\sigma^{2}$$

If the marginal likelihood is intractable, can approximate with BIC.

$$\log p(\mathcal{D}|\gamma) \approx \log p(y|X, \hat{w}_{\gamma}, \sigma^2) - \frac{\|\gamma\|_0}{2} \log N$$

$$\log p(\gamma | \mathcal{D}) \approx \log p(y | X, \hat{w}_{\gamma}, \sigma^2) - \frac{\|\gamma\|_0}{2} \log N - \lambda \|\gamma\|_0 + \text{const}$$

where \hat{w}_{γ} is ML or MAP estimate based on X_{γ} and $\lambda = \log((1-\pi_0)/\pi_0)$ (controls the sparsity).

13.2.2: Bernoulli-Gaussian Model

Also called binary mask model.

$$y_i|x_i, w, \gamma, \sigma^2 \sim \mathcal{N}\left(\sum_j \gamma_j w_j x_{ij}, \sigma^2\right)$$

$$\gamma_j \sim \mathrm{Ber}(\pi_0)$$

$$w_i \sim \mathcal{N}(0, \sigma_w^2)$$

Difference between this and spike and slab:

1. Don't integrate out irrelevant coefficients.

2.
$$\gamma_j \to y \leftarrow w_j \text{ vs. } \gamma_j \to w_j \to y.$$

13.3: l_1 Regularization

Using discrete priors like $\gamma_j \in \{0, 1\}$ can cause computation problems with finding the posterior mode. So we replace such priors with continuous ones that encourage sparsity. For example, Laplace prior

$$p(w|\lambda) \propto \prod_{j=1}^{D} \exp\left\{-\lambda|w_j|\right\}$$

$$PNLL(w) = NLL(w) + \lambda ||w||_1$$

LASSO solution for regression vs. Ridge solution.

$$\hat{w}_k^{\text{LASSO}} = \text{sign}(\hat{w}_k^{\text{OLS}}) \left(|\hat{w}_k^{\text{OLS}}| - \frac{\lambda}{2} \right)_+ \qquad \hat{w}_k^{\text{RIDGE}} = \frac{\hat{w}_k^{\text{OLS}}}{1 + \lambda}$$

13.3.4: Regularization Path

As we increase λ , $\hat{w}(\lambda)$ gets sparser. Can visualize this by plotting $\hat{w}_j(\lambda)$ vs λ , called **regularization path**. Note that active set of non-zero coefficients only changes at some finite number of critical points. Gives rise to the LARS algorithm which is roughly as efficient as OLS.

13.3.5: Model Selection

We call a method which can recover the true model when $N \to \infty$, **model selection consistent**. We usually choose λ for the LASSO via cross validation to maximize predictive optimality. But this does not result in model selection consistency. Can make l_1 regularization more robust to small perturbations of the data by using Bayesian l_1 regularization or LASSO on bootstrapped data.

13.4: l₁ Regularization: Algorithms

13.4.1: Coordinate Descent

Idea: optimize coordinates one-by-one.

$$w_i^* = \operatorname{argmin}_z f(w + ze_i) - f(w)$$

Can either cycle through each coordinate or select each at random.

13.5: l_1 Regularization: Extensions

13.5.1: Group LASSO

Idea: Encourage sparsity of groups of coefficients.

$$J(w) = \text{NLL}(w) + \sum_{g=1}^{G} \lambda_g ||w_g||_2$$
 where $||w_g||_2 = \sqrt{\sum_{j \in g} w_j^2}$

Note that this differs from Ridge regression as we use $||w_g||_2$ rather than $||w_g||_2^2$.

13.5.2: Fused LASSO

Idea: want neighboring coefficients to be close to one another.

$$J(w, \lambda_1, \lambda_2) = \sum_{i=1}^{N} (y_i - w_i)^2 + \lambda_1 \sum_{i=1}^{N} |w_i| + \lambda_2 \sum_{i=1}^{N-1} |w_{i+1} - w_i|$$

Can also generalize this beyond simple chain neighbor structures.

13.5.3: Elastic Net

Idea: Combine Ridge and LASSO.

$$J(w, \lambda_1, \lambda_2) = \|y - Xw\|^2 + \lambda_2 \|w\|_2^2 + \lambda_1 \|w\|_1$$

Chapter 14: Kernels

14.1: Introduction

For some complex objects, not clear how to model them without assuming some generative model on their features. But if we have a notion of similarity between objects, we can use kernel methods.

14.2: Kernel Functions

Kernel is some function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. Typically symmetric and non-negative.

14.2.1: RBF Kernels

A radial basis function (RBF) is one that only depends on ||x - x'||. Gives rise to the RBF kernel,

$$\kappa(x, x') = \exp\left\{-\frac{\|x - x'\|^2}{2\sigma^2}\right\}$$

Squared-exponential or Gaussian kernel,

$$\kappa(x, x') = \exp\left\{-\frac{1}{2}(x - x')^T \Sigma^{-1}(x - x')\right\}$$

14.2.2: Kernels for Comparing Documents

Cosine similarity,

$$\kappa(x_i, x_{i'}) = \frac{x_i^T x_{i'}}{\|x_i\|_2 \|x_{i'}\|_2}$$

Could also transform with TF-IDF then get cosine similarity.

14.2.3: Mercer (Positive Definite) Kernels

Gram matrix, K, has $K_{ij} = \kappa(x_i, x_j)$. If K positive definite for any choice of inputs, called a **Mercer kernel**. Mercer kernels are nice because we can use Mercer's theorem which uses $K = U^T \Lambda U = (\Lambda^{1/2} U)^T (U \Lambda^{1/2})$ to write $\kappa(x, x') = \phi(x)^T \phi(x')$. Thus there is some function ϕ such that κ is an inner-product in the embedded space.

14.2.6: String Kernels

$$\kappa(x, x') = \sum_{s \in \mathcal{A}^*} w_s \phi_s(x) \phi_s(x')$$

where $\phi_s(x)$ is number of times s occurs as substring of x, $w_s \ge 0$, and \mathcal{A}^* is set of all strings from alphabet \mathcal{A} .

14.3: Using Kernels inside GLMs

14.3.1: Kernel Machines

A kernel machine is a GLM where input vector has the form

$$\phi(x) = (\kappa(x, \mu_1), \dots, \kappa(x, \mu_K))$$

for some K centroids μ_1, \ldots, μ_K .

14.4: Kernel Trick

Kernel trick: Instead of defining a feature vector in terms of kernels as above, just work with original inputs and replace inner-products with kernels.

14.4.1: Kernelized Nearest-Neighbors

Observe that

$$||x_i - x_i||_2^2 = \langle x_i, x_i \rangle + \langle x_i, x_i \rangle - 2\langle x_i, x_i \rangle$$

So we can replace all of these inner products with kernels.

14.4.4: Kernel PCA

Find principal component projections in lower dimensional non-linear embedding.

14.5: SVMs

Consider l_2 -regularized empirical risk function,

$$J(w, \lambda) = \sum_{i=1}^{N} L(y_i, \hat{y}_i) + \lambda ||w||^2$$

Idea: promote sparsity via L rather than the penalty term.

14.5.1: SVMs for Regression

(Vapnik) Epsilon insensitive loss function

$$L_{\epsilon}(y, \hat{y}) = \begin{cases} 0 & |y - \hat{y}| < \epsilon \\ |y - \hat{y}| - \epsilon & \text{otherwise} \end{cases}$$

So it doesn't penalize you if you are within ϵ of the target. Can formulate constrained optimization problem with this loss as

$$J = C \sum_{i=1}^{N} (\xi_i^+ - \xi_i^-) + \frac{1}{2} ||w||^2$$

where ξ_i^+, ξ_i^- are slack variables such that

$$y_i \leqslant f(x_i) + \epsilon + \xi_i^+$$
 $y_i \geqslant f(x_i) - \epsilon - \xi_i^-$

and $\hat{y} = f(x_i) = w^T x_i + w_0$, constrained to $\xi_i^+ \ge 0$, $\xi_i^- \ge 0$. Gives standard quadratic program with 2N + D + 1 variables, yielding solution,

$$\hat{w} = \sum_{i} \alpha_{i} x_{i} \qquad \alpha_{i} \geqslant 0$$

with sparse α . Then can kernelize as

$$\hat{y}(x) = \hat{w}_0 + \sum_i \alpha_i \kappa(x_i, x)$$

14.5.2: SVMs for Classification

Hinge loss: let $y \in \{0,1\}$ then define

$$L_{hinge}(y, f(x)) = (1 - yf(x))_{+}$$

Then write as constrained optimization problem,

$$\min_{w,w_0,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \xi_i \text{ s.t. } \xi_i \geqslant 0, \ y_i(x_i^T w + w_0) \geqslant 1 - \xi_i, \ i = 1, ..., N$$

Again we get a solution of the form

$$\hat{w} = \sum_{i} \alpha_i x_i$$

and thus after kernelizing,

$$\hat{y}(x) = \operatorname{sign}\left(\hat{w}_0 + \sum_{i=1}^{N} \alpha_i \kappa(x_i, x)\right)$$

14.5.2.2: The Large Margin Principle

Can be shown that SVM objective is maximizing distance of decision boundary from support vectors.

14.7: Kernels for Building Generative Models

Smoothing kernel, $\kappa: \mathcal{X} \to \mathbb{R}$ satisfies

$$\int \kappa(x)dx = 1, \quad \int x\kappa(x)dx = 0, \quad \int x^2\kappa(x)dx > 0$$

14.7.2: Kernel Density Estimator (KDE)

Also known as **Parzen window estimator**. Use kernel with bandwidth h to estimate density as

$$\hat{p}(x) = \frac{1}{N} \sum_{i=1}^{N} \kappa_h(x - x_i)$$

14.7.4: Kernel Regression

Goal: compute $f(x) = \mathbb{E}[y|x]$. Can use KDE to approximate joint density,

$$p(x,y) \approx \frac{1}{N} \sum_{i=1}^{N} \kappa_h(x - x_i) \kappa_h(y - y_i)$$

Then

$$f(x) = \frac{\sum_{i=1}^{N} \kappa_h(x - x_i) y_i}{\sum_{i=1}^{N} \kappa_h(x - x_i)}$$

Also called Nadarya-Watson model.