Notes for Machine Learning: A Probabilistic Perspective by
Kevin P. Murphy

Kevin O’Connor

Chapter 13: Sparse Linear Models

Goal: select sets of relevant variables simultaneously.

13.2: Bayesian Variable Selection

Suppose we have latent variables, v; = 1(feature j relevant). Then compute posterior of v =
(’717 SX) PYD)7

exp{—f(v)}
2y exp{=f(7)}

Two ways of estimating ~y:

p(|D) = where /(1) = (logp(Dv) N 10gp(7))

1. MAP: 4 = argmax p(y|D) = argmin f(y). However this is often not representative of full
posterior mass.

2. Median model: 4 = {j : p(v; = 1|D) > 0.5}.

13.2.1: Spike and Slab Model

Let mg be the probability that a feature is relevant. Then define the hyper-prior on -,

D
p(7) = [] Ber(zlmo) = w1 (1 — mg) P Ilo
j=1
Define the prior on w;

do(w;) v =0
12 A) — 0\ J
p(wj\a 77j) { N(wj’(),O'QO'?U) i =1

Then assuming Gaussianity, we can write the likelihood in terms of only features with v; = 1
(denoted by the subscript, 7).

p(Dly) = ///\f(y]Xvwv,UQI]\;)/\/(wv\OW,0202117)})((72)czlu;7d<72
If the marginal likelihood is intractable, can approximate with BIC.

. Yllo
log p(D]7) = log p(y| X, 1+, 0%) — H2” log N
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where ., is ML or MAP estimate based on X, and X\ = log((1 —mg)/mo) (controls the sparsity).

log p(v|D) ~ log p(y| X, by, 0°) log N — Al|v|lo + const
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13.2.2: Bernoulli-Gaussian Model
Also called binary mask model.
yilzi, w, v, 0% ~ N< Z’Yjwjfﬁija 0’2>
J
~v; ~ Ber(m)
wj ~ N(O’ o-%u)
Difference between this and spike and slab:

1. Don’t integrate out irrelevant coefficients.

2. vj =y < wj Vs, Y = wj =Y.

13.3: [; Regularization

Using discrete priors like v; € {0,1} can cause computation problems with finding the posterior
mode. So we replace such priors with continuous ones that encourage sparsity. For example,
Laplace prior

D
pw|) o< T exp {=Alw;|}
j=1

PNLL(w) = NLL(w) + A|w||1
LASSO solution for regression vs. Ridge solution.

;OLS
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13.3.4: Regularization Path

As we increase A, w(\) gets sparser. Can visualize this by plotting w;(\) vs A, called regular-
ization path. Note that active set of non-zero coefficients only changes at some finite number
of critical points. Gives rise to the LARS algorithm which is roughly as efficient as OLS.

13.3.5: Model Selection

We call a method which can recover the true model when N — 0o, model selection con-
sistent. We usually choose A for the LASSO via cross validation to maximize predictive op-
timality. But this does not result in model selection consistency. Can make [ regularization
more robust to small perturbations of the data by using Bayesian I; regularization or LASSO
on bootstrapped data.

13.4: [ Regularization: Algorithms
13.4.1: Coordinate Descent
Idea: optimize coordinates one-by-one.

*_

w; = argmin, f(w + ze;) — f(w)

Can either cycle through each coordinate or select each at random.



13.5: [y Regularization: Extensions
13.5.1: Group LASSO
Idea: Encourage sparsity of groups of coefficients.
G
T(w) = NUL(w) + 3" Agllwglls  where [wglls =[S w?
g=1 Jj€g

Note that this differs from Ridge regression as we use |lwg||2 rather than |lwg||3.

13.5.2: Fused LASSO

Idea: want neighboring coefficients to be close to one another.

N

N N-1
J(w, A A2) =) (i —wi)> + A D Jwil + X2 Y [win — w
i=1 i=1 i—1

Can also generalize this beyond simple chain neighbor structures.
13.5.3: Elastic Net
Idea: Combine Ridge and LASSO.

J(w, A1, A2) = [ly — Xw|[* + Aolfwl]f3 + At [lw]s

Chapter 14: Kernels

14.1: Introduction

For some complex objects, not clear how to model them without assuming some generative
model on their features. But if we have a notion of similarity between objects, we can use
kernel methods.

14.2: Kernel Functions

Kernel is some function £ : X x X — R. Typically symmetric and non-negative.

14.2.1: RBF Kernels

A radial basis function (RBF) is one that only depends on ||z — 2’||. Gives rise to the RBF
kernel,

12
k(x,x) :exp{—”x il }
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Squared-exponential or Gaussian kernel,
1
k(x,x') = exp {—2(30 — )Tz - CC/)}

14.2.2: Kernels for Comparing Documents

Cosine similarity,

T

) N — X Tyt
W) = e

Could also transform with TF-IDF then get cosine similarity.



14.2.3: Mercer (Positive Definite) Kernels

Gram matrix, K, has K;; = k(x;,x;). If K positive definite for any choice of inputs, called
a Mercer kernel. Mercer kernels are nice because we can use Mercer’s theorem which uses
K =UTAU = (AV2U0)T(UAY?) to write k(z,2") = ¢(z)T$(2'). Thus there is some function ¢
such that x is an inner-product in the embedded space.

14.2.6: String Kernels
I{(l’,m,) = Z w5¢3($)¢5($/)

seA*

where ¢ (z) is number of times s occurs as substring of x, ws > 0, and A* is set of all strings
from alphabet A.

14.3: Using Kernels inside GLMs
14.3.1: Kernel Machines

A kernel machine is a GLM where input vector has the form

Qb(l‘) = (H(za :ul)a BRI "{("Ev /’LK))

for some K centroids py, ..., K.

14.4: Kernel Trick

Kernel trick: Instead of defining a feature vector in terms of kernels as above, just work with
original inputs and replace inner-products with kernels.

14.4.1: Kernelized Nearest-Neighbors
Observe that

i — @jl13 = (25, 2:) + (@, 25) — 2w, 25)

So we can replace all of these inner products with kernels.

14.4.4: Kernel PCA

Find principal component projections in lower dimensional non-linear embedding.

14.5: SVMs

Consider [o-regularized empirical risk function,

N

T(w,A) = > L(yi, i) + M|
=1

Idea: promote sparsity via L rather than the penalty term.



14.5.1: SVMs for Regression
(Vapnik) Epsilon insensitive loss function

0 ly — gl <e
ly — 9| — e otherwise

Le(y,9) = {

So it doesn’t penalize you if you are within € of the target. Can formulate constrained opti-
mization problem with this loss as

al 1
J=0Y (&~ &)+ 5wl
i=1

where ﬁj ,&; are slack variables such that

yi < fz) +e+ & Yi = f(o) —e =&

and § = f(z;) = wlx; + wo, constrained to fj >0, & = 0. Gives standard quadratic program
with 2IV 4+ D + 1 variables, yielding solution,

’L@ZE ;T4 042‘20
7

with sparse a. Then can kernelize as

g(z) = wo + Z a;k(zi, )

14.5.2: SVMs for Classification
Hinge loss: let y € {0,1} then define

Lhinge(y7 f(.%')) = (1 - yf(l')).;.

Then write as constrained optimization problem,
1 N
min_ —|lwl|]* + CZ& st & >0, yi(elw+w) >1-6,i=1,...N
w,wo,& 2 =1

Again we get a solution of the form
w = Z ;T
i
and thus after kernelizing,
N
g(x) = sign (?ijo + Z a;k(x;, a:))
i=1

14.5.2.2: The Large Margin Principle

Can be shown that SVM objective is maximizing distance of decision boundary from support
vectors.

14.7: Kernels for Building Generative Models

Smoothing kernel, x : X — R satisfies
//i(:]f)dﬂ? =1, /x/i(a:)da: =0, /lei(l')dx >0
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14.7.2: Kernel Density Estimator (KDE)

Also known as Parzen window estimator. Use kernel with bandwidth h to estimate density
as

14.7.4: Kernel Regression
Goal: compute f(x) = E[y|z]. Can use KDE to approximate joint density,

N
1
plx,y) = N E kn(x — 2i)kn(y — yi)
=1

SN kn(e — @)y

Zij\il kp( — ;)

Also called Nadarya-Watson model.

fz) =



