Notes for *Elementary Differential Geometry* by O'Neill

Kevin O'Connor

Ch1: Calculus on Euclidean Space

1.3: Directional Derivatives

Definition 0.1. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be differentiable and \mathbf{v}_p be a tangent vector to \mathbb{R}^3 , then the directional derivative of f with respect to \mathbf{v}_p is defined as

$$\mathbf{v}_p[f] = \frac{d}{dt}(f(\mathbf{p} + t\mathbf{v})) \bigg|_{t=0}$$

Lemma 0.1. If $\mathbf{v}_p = (v_1, v_2, v_3) \in T_p \mathbb{R}^3$, then

$$\mathbf{v}_p[f] = \sum_i v_i \frac{\partial f}{\partial x_i}(\mathbf{p})$$

Theorem 0.2. Let f and g be functions on \mathbb{R}^3 , \mathbf{v}_p and \mathbf{w}_p be tangent vectors, and a and b numbers. Then

- 1. $(a\mathbf{v}_p + b\mathbf{w}_p)[f] = a\mathbf{v}_p[f] + b\mathbf{w}_p[f].$
- 2. $\mathbf{v}_p[af + bg] = a\mathbf{v}_p[f] + b\mathbf{v}_p[g].$
- 3. $\mathbf{v}_p[fg] = \mathbf{v}_p[f] \cdot g(\mathbf{p}) + f(\mathbf{p}) \cdot \mathbf{v}_p[g].$

1.4: Curves in \mathbb{R}^3

Definition 0.3. A curve in \mathbb{R}^3 is a differentiable function $\alpha : I \to \mathbb{R}^3$ from an open interval I into \mathbb{R}^3 .

Definition 0.4. Let $\alpha : I \to \mathbb{R}^3$ be a curve. If $h : J \to I$ is a differentiable function on an open interval J, then the composite function

$$\beta = \alpha(h) : J \to \mathbb{R}^3$$

is a curve called a **reparametrization** of α by h.

Lemma 0.2. If β is a reparametrization of α by h, then

$$\beta'(s) = \left(\frac{dh}{ds}\right)(s)\alpha'(h(s))$$

Lemma 0.3. Let α be a curve in \mathbb{R}^3 and let f be a differentiable function on \mathbb{R}^3 , then

$$\alpha'(t)[f] = \frac{d(f(\alpha))}{dt}(t)$$

1.5: 1-forms

Definition 0.5. A 1-form $\phi : T_p \mathbb{R}^3$ is a function on the set of all tangent vectors to \mathbb{R}^3 such that ϕ is linear at each point. I.e.

$$\phi(a\mathbf{v} + b\mathbf{w}) = a\phi(\mathbf{v}) + b\phi(\mathbf{w})$$

Definition 0.6. If $f : \mathbb{R}^3 \to \mathbb{R}$ is differentiable then the **differential** df of f is the 1-form such that

$$df(\mathbf{v}_p) = \mathbf{v}_p[f], \quad \forall \mathbf{v}_p \in T_p \mathbb{R}^3$$

Lemma 0.4. If f is a differentiable function on \mathbb{R}^3 , then

$$df = \sum_{i} \frac{\partial f}{\partial x_i} dx_i$$

Lemma 0.5. Let $f : \mathbb{R}^3 \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$ be differentiable functions. Then the composite function $h(f) : \mathbb{R}^3 \to \mathbb{R}$ is also differentiable. Then

$$d(h(f)) = h'(f)df$$

1.6: Differential Forms

Multiplication for differential forms is antisymmetric. So

$$dx_i dx_j = -dx_j dx_i$$

which implies that $dx_i dx_i = 0$. Now note that

- A 0-form is a differentiable function f.
- A 1-form is an expression fdx + gdy + hdz.
- A 2-form is an expression f dx dy + g dx dz + h dy dz.
- A 3-form is an expression f dx dy dz.

Lemma 0.6. If ϕ and ψ are 1-forms, then

$$\phi \wedge \psi = -\psi \wedge \phi$$

Definition 0.7. If $\phi = \sum f_i dx_i$ is a 1-form on \mathbb{R}^3 , the exterior derivative of ϕ is the 2-form $d\phi = \sum df_i \wedge dx_i$.

Theorem 0.8. Let f and g be functions, ϕ and ψ be 1-forms. Then

- 1. d(fg) = dfg + fdg.
- 2. $d(f\phi) = df \wedge \phi + fd\phi$.
- 3. $d(\phi \wedge \psi) = d\phi \wedge \psi \phi \wedge d\psi$.

Ch2: Frame Fields

2.2: Curves

Theorem 0.9. If α is a regular curve in \mathbb{R}^3 , then there exists a reparametrization β of α such that β is unit-speed.

2.3: The Frenet Formulas

Theorem 0.10. (Frenet formulas): If $\beta : I \to \mathbb{R}^3$ is a unit-speed curve with curvature $\kappa > 0$, then

$$\begin{bmatrix} T'\\N'\\B' \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0\\ -\kappa & 0 & \tau\\ 0 & -\tau & 0 \end{bmatrix} \begin{bmatrix} T\\N\\B \end{bmatrix}$$

Corollary 0.11. Let β be a unit-speed curve in \mathbb{R}^3 with $\kappa > 0$. Then β is a plane curve if and only if $\tau = 0$.

Lemma 0.7. If β is a unit-speed curve with constant curvature $\kappa > 0$ and $\tau = 0$, then β is part of a circle with radius $1/\kappa$.

2.4: Arbitrary Speed Curves

Theorem 0.12. (Frenet formulas): If $\alpha : I \to \mathbb{R}^3$ is a regular curve with curvature $\kappa > 0$, then

$$\begin{bmatrix} T'\\N'\\B' \end{bmatrix} = \begin{bmatrix} 0 & \kappa v & 0\\ -\kappa v & 0 & \tau v\\ 0 & -\tau v & 0 \end{bmatrix} \begin{bmatrix} T\\N\\B \end{bmatrix}$$

Theorem 0.13. Let α be a regular curve in \mathbb{R}^3 . Then

$$T = \frac{\alpha'}{\|\alpha'\|} \qquad N = B \times T \qquad B = \frac{\alpha' \times \alpha''}{\|\alpha' \times \alpha''\|}$$

and

$$\kappa = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3} \qquad \tau = \frac{(\alpha' \times \alpha'') \cdot \alpha'''}{\|\alpha' \times \alpha''\|^2}$$

Definition 0.14. A regular curve α in \mathbb{R}^3 is a cylindrical helix if T has constant angle θ with some fixed unit vector \mathbf{u} . I.e. $T(t) \cdot \mathbf{u} = \cos \theta$, $\forall t$.

Theorem 0.15. A regular curve α with $\kappa > 0$ is a cylindrical helix if and only if the ratio τ/κ is constant.

2.5: Covariant Derivatives

Definition 0.16. Let W be a vector field on \mathbb{R}^3 and v be a tangent vector field to \mathbb{R}^3 at point **p**. Then the **covariant derivative** of W with respect to v is

 $\nabla_v W = W(\mathbf{p} + t\mathbf{v})'(0)$

Lemma 0.8. If $W = (w_1, w_2, w_3)$ is a vector field on \mathbb{R}^3 and **v** is a tangent vector at + then

$$\nabla_v W = (\mathbf{v}[w_1], \mathbf{v}[w_2], \mathbf{v}[w_3])$$

Theorem 0.17. Let \mathbf{v} and \mathbf{w} be tangent vectors to \mathbb{R}^3 at ι and let Y and Z be vector fields on \mathbb{R}^3 . Then for numbers a, b and functions f,

1. $\nabla_{av+bw}Y = a\nabla_v Y + b\nabla_w Y$. 2. $\nabla_v(aY + bZ) = a\nabla_v Y + b\nabla_v Z$. 3. $\nabla_v(fY) = \mathbf{v}[f]Y(\mathbf{p}) + f(\mathbf{p})\nabla_v Y$. 4. $\mathbf{v}[Y \cdot Z] = \nabla_v Y \cdot Z(\mathbf{p}) + Y(\mathbf{p}) \cdot \nabla_v Z$.

Ch3: Euclidean Geometry

3.5: Congruence of Curves

Definition 0.18. Two curves $\alpha, \beta : I \to \mathbb{R}^3$ are congruent if there exists an isometry F of \mathbb{R}^3 such that $\beta = F(\alpha)$.

Theorem 0.19. If $\alpha, \beta : I \to \mathbb{R}^3$ are unit-speed curves such that $\kappa_{\alpha} = \kappa_{\beta}$ and $\tau_{\alpha} = \pm \tau_{\beta}$, then α and β are congruent.

Corollary 0.20. Let α be a unit-speed curve in \mathbb{R}^3 . Then α is a helix if and only if both its curvature and torsion are nonzero constants.

Corollary 0.21. Let $\alpha, \beta: I \to \mathbb{R}^3$ be arbitrary-speed curves. If

 $v_{\alpha} = v_{\beta} > 0$ $\kappa_{\alpha} = \kappa_{\beta} > 0$ $\tau_{\alpha} = \pm \tau_{\beta}$

then the curves α and β are congruent.

Ch4: Calculus on a Surface

4.1: Surfaces in \mathbb{R}^3

Recall that a mapping is a function whose coordinates are differentiable.

Definition 0.22. A coordinate patch $\mathbf{x} : D \to \mathbb{R}^3$ is a one-to-one regular mapping of an open set D of \mathbb{R}^2 into \mathbb{R}^3 .

Remark 0.23. Regularity of a mapping can be checked by ensuring that $\mathbf{x}_u \times \mathbf{x}_v \neq 0$ everywhere.

Definition 0.24. A surface in \mathbb{R}^3 is a subset M of \mathbb{R}^3 such that for each point $\mathbf{p} \in M$, there exists a proper patch in M whose image contains a neighborhood of \mathbf{p} .

Theorem 0.25. Let g be a differentiable real-valued function on \mathbb{R}^3 and c a number. Then M: g(x, y, z) = c is a surface if the $dg \neq 0$ at every point.

4.2: Patch Computations

Definition 0.26. Denote by \mathbf{x}_u and \mathbf{x}_v the respective partial derivatives (velocities) of the u and v parameter curves.

Definition 0.27. A regular mapping $\mathbf{x} : D \to \mathbb{R}^3$ whose image lies in a surface M is called a *parametrization* of the region $\mathbf{x}(D)$ in M.

So when we relax the one-to-one condition on a coordinate patch, we get a parametrization.

Definition 0.28. A ruled surface is a surface swept out by a straight line L moving along a curve β . The various positions of the generating line L are called the rulings of the surface. Such a surface always has a ruled parametrization

 $\mathbf{x}(u,v) = \beta(u) + v\delta(u)$

where δ points along L.

4.3: Differentiable Functions and Tangent Vectors

Definition 0.29. A function $f : M \to \mathbb{R}$ is differentiable if for any coordinate patch \mathbf{x} , $f(\mathbf{x}) : D \to \mathbb{R}$ is differentiable in the usual Euclidean sense. Likewise we extend this to functions $F : M \to \mathbb{R}^n$.

Lemma 0.9. If $\alpha : I \to M$ is a curve whose route lies in the image $\mathbf{x}(D)$ of a single patch \mathbf{x} , then there exist unique differentiable functions a_1, a_2 on I such that

$$\alpha(t) = \mathbf{x}(a_1(t), a_2(t)), \quad \forall t \in I$$

Theorem 0.30. If $M \subset \mathbb{R}^3$ is a surface and $F : \mathbb{R}^n \to \mathbb{R}^3$ is a differentiable mapping whose image lies in M, then considered as a mapping $F : \mathbb{R}^n \to M$ into M, F is differentiable.

Corollary 0.31. (Smooth overlap) If \mathbf{x} and \mathbf{y} are patches in a surface $M \subset \mathbb{R}^3$ whose images overlap then the composite functions $\mathbf{x}^{-1}\mathbf{y}$ and $\mathbf{y}^{-1}\mathbf{x}$ are (differentiable) mappings defined on open sets of \mathbb{R}^2 .

Corollary 0.32. If \mathbf{x} and \mathbf{y} are overlapping patches in M, then there exist unique differentiable functions \overline{u} and \overline{v} such that

 $\mathbf{y}(u,v) = \mathbf{x}(\overline{u}(u,v),\overline{v}(u,v))$

Definition 0.33. Let $\mathbf{p} \in M \subset \mathbb{R}^3$. A tangent vector \mathbf{v} in \mathbb{R}^3 is tangent to M at \mathbf{p} if \mathbf{v} is a velocity vector of some curve in M.

The set of all tangent vectors to M at a point $\mathbf{p} \in M$ will be denoted $T_p M$.

Lemma 0.10. If $\mathbf{p} \in M$ and $\mathbf{x}(u_0, v_0) = \mathbf{p}$, then any $\mathbf{v} \in T_p M$ can be written as a linear combination of $\mathbf{x}_u(u_0, v_0)$ and $\mathbf{x}_v(u_0, v_0)$.

Lemma 0.11. If M : g = c is a surface in \mathbb{R}^3 , then the gradient vector field, ∇g , is a non-vanishing normal vector field on M.

Definition 0.34. Let $\mathbf{v} \in T_pM$ and $f: M \to \mathbb{R}$ be differentiable. Then define

$$\mathbf{v}[f] = \frac{d}{dt}(f\alpha)(0)$$

for all curves α in M with initial velocity **v**.

4.4: Differential Forms on a Surface

Definition 0.35. A 2-form $\eta: T_pM \times T_pM \to \mathbb{R}$ on a surface M is a real-valued function on all ordered pairs of tangent vectors on M such that

1. $\eta(\mathbf{v}, \mathbf{w})$ is linear in \mathbf{v} and \mathbf{w} .

2.
$$\eta(\mathbf{v}, \mathbf{w}) = -\eta(\mathbf{w}, \mathbf{v}).$$

Note that this definition implies that $\eta(\mathbf{v}, \mathbf{v}) = 0, \forall \mathbf{v} \in T_p M$.

Definition 0.36. If ϕ and ψ are 1-forms on a surface M, the wedge product $\phi \land \psi$ is the 2-form on M such that

$$(\phi \wedge \psi)(\mathbf{v}, \mathbf{w}) = \phi(\mathbf{v})\psi(\mathbf{w}) - \phi(\mathbf{w})\psi(\mathbf{v}), \qquad \forall \mathbf{v}, \mathbf{w} \in T_pM$$

In general, if ξ is a p-form and η is a q-form,

 $\xi \wedge \eta = (-1)^{pq} \eta \wedge \xi$

Definition 0.37. Let ϕ be a 1-form on M. Then the exterior derivative $d\phi$ of ϕ is the 2-form such that for any patch \mathbf{x} in M,

$$d\phi(\mathbf{x}_u, \mathbf{x}_v) = \frac{\partial}{\partial u}(\phi(\mathbf{x}_v)) - \frac{\partial}{\partial v}(\phi(\mathbf{x}_u))$$

It can be shown that this definition agrees on overlaps between patches.

Theorem 0.38. If $f: M \to \mathbb{R}$ is a function, then d(df) = 0.

Definition 0.39. A differential form ϕ is closed if $d\phi = 0$.

Definition 0.40. A differential form ϕ is **exact** if $\phi = d\xi$ for some differential form ξ .

4.5: Mappings of Surfaces

Definition 0.41. A function $F : M \to N$ between surfaces is differentiable if for each patch **x** in M and **y** in N, $\mathbf{y}^{-1}F\mathbf{x}$ is differentiable in the Euclidean sense. F is then called a mapping of surfaces.

Definition 0.42. Let $F : M \to N$ be a mapping of surfaces. Then the **tangent map** $F_* : T_pM \to T_{F(p)}N$ of F is defined such that if α is a curve in M with $\alpha'(0) = \mathbf{v} \in T_pM$, then $F_*(\mathbf{v}) = F(\alpha)'(0)$.

Definition 0.43. A mapping $F: M \to N$ with a inverse is called a diffeomorphism.

Theorem 0.44. Let $F: M \to N$ be a mapping of surfaces and suppose that $F_{*p}: T_p(M) \to T_{F(p)}N$ is a linear isomorphism at some point $\mathbf{p} \in M$. Then there exists a neighborhood \mathcal{U} of \mathbf{p} such that the restriction of F to \mathcal{U} is a diffeomorphism onto a neighborhood \mathcal{V} of $F(\mathbf{p}) \in M$.

This implies that a one-to-one regular mapping F of M onto N is a diffeomorphism.

When there is a diffeomorphism between two surfaces, we say that they are diffeomorphic.

Definition 0.45. Let $F: M \to N$ be a mapping of surfaces.

1. If ϕ is a 1-form on N, let $F^*\phi$ be the 1-form on M such that

$$(F^*\phi)(\mathbf{v}) = \phi(F_*\mathbf{v}), \quad \forall \mathbf{v} \in T_p M$$

2. If η is a 2-form on N, let $F^*\eta$ be the 2-form on M such that

$$(F^*\eta)(\mathbf{v},\mathbf{w}) = \eta(F_*\mathbf{v},F_*\mathbf{w}), \quad \forall \mathbf{v},\mathbf{w} \in T_pM$$

Theorem 0.46. Let $F : M \to N$ be a mapping of surfaces and let ξ and η be forms on N. Then

- 1. $F^*(\xi + \eta) = F^*\xi + F^*\eta$.
- 2. $F^*(\xi \wedge \eta) = F^*\xi \wedge F^*\eta$.
- 3. $F^*(d\xi) = d(F^*\xi)$.

4.6: Integration of Forms

Definition 0.47. Let ϕ be a 1-form on M and let $\alpha : [a,b] \to M$ be a curve segment in M. Then define

$$\int_{\alpha} \phi = \int_{[a,b]} \alpha^* \phi = \int_a^b \phi(\alpha'(t)) dt$$

Theorem 0.48. Let f be a function on M and let $\alpha : [a,b] \to M$ be a curve segment in M from $\mathbf{p} = \alpha(a)$ to $\mathbf{q} = \alpha(b)$. Then

$$\int_{\alpha} df = f(\mathbf{q}) - f(\mathbf{p})$$

Importantly, the result above does not depend on the path chosen from \mathbf{p} to \mathbf{q} .

Definition 0.49. Let η be a 2-form on M and let $\mathbf{x} : R \to M$ be a 2-segment in M. Then define

$$\iint_{\mathbf{x}} \eta = \iint_{R} \mathbf{x}^{*} \eta = \int_{a}^{b} \int_{c}^{d} \eta(\mathbf{x}_{u}, \mathbf{x}_{v}) du dv$$

Definition 0.50. Let $\mathbf{x} : R \to M$ be a 2-segment in M with R the closed rectangle $a \leq u \leq b, c \leq v \leq d$. The **edge curves** of \mathbf{x} are the curve segments $\alpha, \beta, \gamma, \delta$ such that

$$\begin{aligned} \alpha(u) &= \mathbf{x}(u,c) \\ \beta(v) &= \mathbf{x}(b,v) \\ \gamma(u) &= \mathbf{x}(u,d) \\ \delta(v) &= \mathbf{x}(a,v) \end{aligned}$$

Definition 0.51. The boundary $\partial \mathbf{x}$ of the 2-segment \mathbf{x} is

$$\partial \mathbf{x} = \alpha + \beta - \gamma - \delta$$

Theorem 0.52. (Stokes' Theorem) If ϕ is a 1-form on M and $\mathbf{x} : R \to M$ is a 2-segment, then

$$\iint_{\mathbf{x}} d\phi = \int_{\partial \mathbf{x}} \phi$$

Lemma 0.12. Let $\alpha(h) : [a,b] \to M$ be a reparametrization of a curve segment $\alpha : [c,d] \to M$ by $h : [a,b] \to [c,d]$. For any 1-form ϕ on M,

1. If h is orientation-preserving, i.e. h(a) = c and h(b) = d, then

$$\int_{\alpha(h)} \phi = \int_{\alpha} \phi$$

2. If h is orientation-reversing, i.e. h(a) = d and h(b) = c, then

$$\int_{\alpha(h)} \phi = -\int_{\alpha} \phi$$

4.7: Topological Properties of Surfaces

Definition 0.53. A surface is connected if $\forall \mathbf{p}, \mathbf{q} \in M$, there exists a curve segment in M from \mathbf{p} to \mathbf{q} .

Lemma 0.13. A surface M is compact if and only if it can be covered by the images of a finite number of 2-segments.

Lemma 0.14. A continuous function f on a compact region \mathcal{R} in a surface M takes on a maximum at some point of M.

Definition 0.54. A surface M is orientable if there exists a differentiable (or merely continuous) 2-form μ on M that is nonzero at every point of M.

Theorem 0.55. A surface $M \subset \mathbb{R}^3$ is orientable if and only if there exists a unit normal vector field on M. If M is connected and orientable, there are exactly two unit normals, $\pm U$.

Definition 0.56. A closed curve α in M is homotopic to a constant if there is a 2-segment $\mathbf{x} : R \to M$ (called a homotopy) defined on $R : a \leq u \leq b, 0 \leq v \leq 1$ such that α is the base curve of \mathbf{x} and the other three edge curves are constant at $\mathbf{p} = \alpha(a) = \alpha(b)$.

The way to think a curve being homotopic to a constant is that when v = 0, we get the base curve $\alpha(u)$. But as we increase v, the curve shrinks, maintaining the endpoints $\alpha(a) = \alpha(b) = \mathbf{p}$. When we set v = 1, the curve is constant at $\alpha(u) = \mathbf{p}$.

Definition 0.57. A surface M is simply connected if it is connected and every loop in M is homotopic to a constant.

Here a *loop* is a curve such that $\alpha(a) = \alpha(b) = \mathbf{p}$ but not necessarily $\alpha'(a) = \alpha'(b)$.

Lemma 0.15. Let ϕ be a closed 1-form on a surface M. If a loop α in M is homotopic to a constant, then

$$\int_{\alpha} \phi = 0$$

Lemma 0.16. (Poincare) On a simply connected surface, every closed 1-form is exact.

Theorem 0.58. A compact surface in \mathbb{R}^3 is orientable.

Theorem 0.59. A simply connected surface is orientable.

4.8: Manifolds

Now we construct surfaces without an embedding space. We will use the notion of an *abstract* patch which is simply a one-to-one function from an open set $D \subset \mathbb{R}^2$ into M.

Definition 0.60. A surface is a set M with a collection \mathcal{P} of abstract patches satisfying:

- 1. The covering axiom: The images of the patches in the collection \mathcal{P} cover M.
- The smooth overlap axiom: ∀x, y ∈ P, the composite functions, y⁻¹x and x⁻¹y are Euclidean differentiable and defined on open sets of ℝ².
- 3. Hausdorff axiom: $\forall \mathbf{p}, \mathbf{q} \in M$ with $\mathbf{p} \neq \mathbf{q}$, there exist disjoint (non-overlapping) patches \mathbf{x} and \mathbf{y} with $\mathbf{p} \in \mathbf{x}(D)$ and $\mathbf{q} \in \mathbf{y}(E)$.

Definition 0.61. Let $\alpha : I \to M$ be a curve in an abstract surface M. For each $t \in I$, the **velocity vector** $\alpha'(t)$ is defined such that

$$\alpha'(t)[f] = \frac{d(f\alpha)}{dt}(t)$$

for every differentiable $f: M \to \mathbb{R}$.

Definition 0.62. An *n*-dimensional manifold M is an abstract surface where the abstract patches map from $D \to M$ where D is an open subset of \mathbb{R}^n .

Ch5: Shape Operators

Two surfaces in \mathbb{R}^3 have the same shape (i.e. "same" shape operator) iff they are congruent.

Note that in this chapter we assume that $M \subset \mathbb{R}^3$ is connected and regular.

5.1: The Shape Operator of $M \subset \mathbb{R}^3$

Definition 0.63. Let Z be a vector field on M and $\mathbf{v} \in T_pM$. Define the covariant derivative, $\nabla_v Z$ as

(i) Let α be a curve in M with $\alpha(0) = \mathbf{p}$, $\alpha'(0) = \mathbf{v} \in T_p M$. Then $Z(\alpha(t))$ is a vector field in α and we define

$$\nabla_v Z = \frac{d}{dt} Z(\alpha(t)) \bigg|_{t=0}$$

(ii) Write $Z = (Z_1, Z_2, Z_3)$ and define

$$\nabla_v Z = \left(v[Z_1], v[Z_2], v[Z_3] \right)$$

Definition 0.64. For $\mathbf{p} \in M$ and $\mathbf{v} \in T_p M$ we define the **shape operator** to be $S_p(\mathbf{v}) = -\nabla_v U$. Lemma 0.17. The shape operator is symmetric,

 $S(\mathbf{v}) \cdot \mathbf{w} = S(\mathbf{w}) \cdot \mathbf{v}, \quad \forall k \mathbf{v}, \mathbf{w} \in T_p M$

5.2: Normal Curvature

Lemma 0.18. If α is a curve on M, then $\alpha'' \cdot U = S(\alpha') \cdot \alpha'$.

Definition 0.65. Let $u \in T_pM$ be a unit tangent vector. The **normal curvature** of M in the *u*-direction is $k(u) = S(u) \cdot u$.

- **Remark 0.66.** 1. If $k(\mathbf{u}) > 0$, then $N(0) = U(\mathbf{p})$ so the surface M is bending toward $U(\mathbf{p})$ in the \mathbf{u} direction.
 - 2. If $k(\mathbf{u}) < 0$, then $N(0) = -U(\mathbf{p})$, so the surface M is bending away from $U(\mathbf{p})$ in the **u** direction.
 - 3. If $k(\mathbf{u}) = 0$, then the rate of bending is unusually small.

Definition 0.67. The max, k_1 , and min, k_2 of the normal curvature are called the **principal** curvatures of M at p. The corresponding directions are called the **principal vectors** / direction.

Definition 0.68. A point p is umbilic if $k_1 = k_2$ at p.

Theorem 0.69. (i) If $k_1 = k_2$, then $S = k_1 Id$ at p.

(ii) If $k_1 > k_2$, then there exist exactly two principal directions. Furthermore, these are eigenvectors of S with $S(u_1) = k_1 u_1$ and $S(u_2) = k_2 u_2$.

Remark 0.70. Locally and after translation and rotation, $M \subset \mathbb{R}^3$ may be approximated as z = f(x, y), where $f_x(0)$ and $f_y(0)$ correspond to principle directions at f(0, 0). In terms of the principle curvatures, we may write a quadratic approximation as

$$z = \frac{1}{2}(k_1x^2 + k_2y^2)$$

Definition 0.71. *D* is a *derivation* on an \mathbb{R} -algebra *A* if it is an operation $D: A \to A$ such that

- (i) D(af+bg) = aD(f) + bD(g).
- (ii) $D(fg) = D(f)g + fD(g), \forall f, g \in A.$

5.3: Gaussian Curvature

Definition 0.72. The Gaussian curvature of $M \subset \mathbb{R}^3$ is the real-valued function K = det S = M.

Definition 0.73. The mean curvature of $M \subset \mathbb{R}^3$ is $H = \frac{1}{2}tr S$.

Remark 0.74. With respect to principal vectors e_1, e_2 ,

$$S = \begin{bmatrix} k_1 & 0\\ 0 & k_2 \end{bmatrix} \quad K = k_1 k_2 \quad H = \frac{1}{2}(k_1 + k_2)$$

Remark 0.75. 1. If $K(\mathbf{p}) > 0$, then M is bending away from its tangent plane in all tangent directions at \mathbf{p} and thus M locally looks like a paraboloid.

2. If $K(\mathbf{p}) < 0$, then M is locally saddle shaped near \mathbf{p} .

Lemma 0.19. If $\mathbf{v}, \mathbf{w} \in T_p(M)$ are linearly independent, then

$$\begin{split} S(\mathbf{v}) \times S(\mathbf{w}) &= K(\mathbf{p})\mathbf{v} \times \mathbf{w} \\ S(\mathbf{v}) \times \mathbf{w} + \mathbf{v} \times S(\mathbf{w}) &= 2H(\mathbf{p})\mathbf{v} \times \mathbf{w} \end{split}$$

Lemma 0.20. In an oriented region of M, $k_1, k_2 = H \pm \sqrt{H^2 - K}$. Thus k_1 and k_2 are continuous in this region but need not be differentiable depending on if $H^2 - K = 0$ (if region contains umbilic points).

Remark 0.76. k_1, k_2 smooth away from umbilic points.

Definition 0.77. If K = 0 we say M is flat.

Definition 0.78. If H = 0 we say M is minimal.

5.4: Computational Techniques

Definition 0.79. Let $\mathbf{x}: D \to M$ be a coordinate patch. Then define the real-valued functions,

 $E = \mathbf{x}_u \cdot \mathbf{x}_u, \quad F = \mathbf{x}_u \cdot \mathbf{x}_v, \quad G = \mathbf{x}_v \cdot \mathbf{x}_v$

$$l = S(\mathbf{x}_u) \cdot \mathbf{x}_u = U \cdot \mathbf{x}_{uu}, \quad m = S(\mathbf{x}_u) \cdot \mathbf{x}_v = U \cdot \mathbf{x}_{uv}, \quad n = S(\mathbf{x}_v) \cdot \mathbf{x}_v = U \cdot \mathbf{x}_{vv}$$

Definition 0.80. Let $\mathbf{v} = v_1 \mathbf{x}_u + v_2 \mathbf{x}_v$ and $\mathbf{w} = w_1 \mathbf{x}_u + w_2 \mathbf{x}_v$. Define the first fundamental form as

 $\mathbf{v} \cdot \mathbf{w} = Ev_1w_1 + F(v_1w_1 + v_2w_2) + Gv_2w_2$

Theorem 0.81.

$$K = \frac{nl - m^2}{EG - F^2}$$
 $H = \frac{Gl + En - 2Fm}{2(EG - F^2)}$

5.5: The Implicit Case

Lemma 0.21. Let V, W be two tangent vector fieldds on M such that $V \times W = Z$. Then

$$K = \frac{Z \cdot (\nabla_v Z \times \nabla_w Z)}{\|Z\|^4} \qquad H = -\frac{Z \cdot ((\nabla_v Z) \times W + V \times (\nabla_W Z))}{2\|Z\|^3}$$

5.6: Special Curves in Surfaces

Definition 0.82. A curve $\alpha(t)$ is a line of curvature or principle curve if $\alpha'(t)$ is a principal vector for all t.

Lemma 0.22. Let α be a regular curve in $M \subset \mathbb{R}^3$ and U be a unit normal vector field restricted to α . Then

- 1. α is principle if and only if U' and α' are collinear at each point.
- 2. If α is a principle curve, then the principle curvature of M in the direction of α' is $(\alpha'' \cdot U)/(\alpha' \cdot \alpha')$.

Lemma 0.23. Let α be a curve cut from a surface $M \subset \mathbb{R}^3$ by a plane P. If the angle between M and P is constant along α , then α is a principle curve of M.

Theorem 0.83. For a surface of revolution, the principal directions are given by $\mathbf{x}_u / ||\mathbf{x}_u||$ and $\mathbf{x}_v / ||\mathbf{x}_v||$.

Definition 0.84. A curve $\alpha(t)$ is asymptotic if its normal curvature is everywhere zero.

Lemma 0.24. Let $\mathbf{p} \in M \subset \mathbb{R}^3$.

- 1. If $K(\mathbf{p}) > 0$, then there are no asymptotic directions at \mathbf{p} .
- 2. If $K(\mathbf{p}) < 0$, then there are exactly two asymptotic directions at \mathbf{p} and they are bisected by the principle directions at angle θ such that

$$\tan^2 \theta = \frac{-k_1(\mathbf{p})}{k_2(\mathbf{p})}$$

3. If $K(\mathbf{p}) = 0$, then every direction is asymptotic if \mathbf{p} is a planar point. Otherwise there is exactly one asymptotic direction and it is also principle.

Lemma 0.25. A ruled surface M has $K \leq 0$. K = 0 if and only if unit normal U is parallel along each ruling of M.

Definition 0.85. A curve $\alpha \subset M \subset \mathbb{R}^3$ is a **geodesic** if α'' is always normal to M.

Definition 0.86. A closed geodesic is a geodesic segment $\alpha : [a,b] \to M$ that is smoothly closed, i.e. $\alpha'(a) = \alpha'(b)$, and thus may be extended by periodicity to the whole real line.

Remark 0.87. On a surface of revolution, all meridians are geodesics.

5.7: Surfaces of Revolution

Definition 0.88. Given a profile curve $\alpha(u) = (f(u), 0, g(u))$ with $||\alpha'||^2 > 0$ and f > 0, we can parametrize a surface of revolution as

$$X(u,v) = \left(f(u)\cos v, f(u)\sin v, g(u)\right)$$

Theorem 0.89. If a surface of revolution is minimal, then M is contained in a plane or catenoid.

Lemma 0.26. For a canonical parametrization (unit-speed) of a surface of revolution,

$$E = 1, \quad F = 0, \quad G = f^2$$

and

$$K = -\frac{f''}{f}$$

Ch6: Geometry of Surfaces in \mathbb{R}^3

Key question: How does the shape of a surface affect its other properties?

6.1: The Fundamental Equations

Definition 0.90. A euclidean frame field on $M \subset \mathbb{R}^3$ consists of three vector fields E_1, E_2, E_3 on M that are orthonormal at each point.

Definition 0.91. If $E_3 = U$ is normal to M then we call this an adapted frame field.

Lemma 0.27. There exists an adapted frame field on M iff M is orientable and exists a nonvanishing (tangent) vector field V on M.

Definition 0.92. The connection one-forms ω_{ij} of an adapted frame field are those such that for $\mathbf{v} \in T_p M$,

$$\nabla_v E_i = \sum_{i=1}^3 \omega_{ij}(\mathbf{v}) E_j(p)$$

So $\omega_{ij}(v) = (\nabla_v E_i) \cdot E_j(p).$

Write

$$\begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = A$$

Theorem 0.93. $w = (dA)A^t$ which implies

$$\omega_{ij} = \sum_{k=1}^{3} (da_{ik})(a^t)_{kj} = \sum_{k=1}^{3} da_{ik} a_{jk}$$

Definition 0.94. The dual one-forms of E_1, E_2, E_3 are one-forms $\theta_1, \theta_2, \theta_3$ such that $\theta_i(v) = v \cdot E_i(p)$ for $v \in T_pM$. In other words,

$$v = \sum_{i=1}^{3} \theta_i(v) E_i$$

Lemma 0.28. If ϕ is a one-form then $\phi = \sum_{i} \phi(E_i) \theta_i$.

Theorem 0.95.

$$\begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix} = A \begin{bmatrix} dx_1 \\ dx_2 \\ dx_3 \end{bmatrix} \Longrightarrow \theta_i = \sum_j a_{ij} dx_j$$

Theorem 0.96. Cartan Structural Equations:

(i) The first structural equations are

$$d\theta_i = \sum_j \omega_{ij} \wedge \theta_j$$

(ii) The second structural equations are

$$d\omega_{ij} = \sum_k \omega_{ik} \wedge \omega_{kj}$$

Proposition 0.97. If $\{E_1, E_2, E_3\}$ is an adapted frame field for $M \subset \mathbb{R}^3$, then

$$S(v) = \omega_{13}(v)E_1(p) + \omega_{23}(v)E_2(p)$$

Theorem 0.98. On a surface with an adapted frame field, the structural equations become

(i) First structural equations

$$d\theta_1 = \omega_{12} \wedge \theta_2 \qquad d\theta_2 = \omega_{21} \wedge \theta_1 = -\omega_{12} \wedge \theta_1 \qquad 0 = d\theta_3 = \omega_{31} \wedge \theta_1 + \omega_{32} \wedge \theta_2$$

(ii) Second structural equations

Gauss Equation: $d\omega_{12} = \omega_{13} \wedge \omega_{32}$

Codazzi Equations: $d\omega_{13} = \omega_{12} \wedge \omega_{23}$ $d\omega_{23} = \omega_{21} \wedge \omega_{13}$

6.2: Form Computations

Lemma 0.29. If ϕ is a one-form then $\phi = \phi(E_1)\theta_1 + \phi(E_2)\theta_2$.

Lemma 0.30. If μ is a two-form then $\mu = \mu(E_1, E_2)\theta_1 \wedge \theta_2$.

Lemma 0.31. (i) $\omega_{13} \wedge \omega_{23} = K\theta_1 \wedge \theta_2$.

(*ii*) $\omega_{13} \wedge \theta_2 + \theta_1 \wedge \omega_{23} = 2H\theta_1 \wedge \theta_2$.

Corollary 0.99.

$$d\omega_{12} = -K\theta_1 \wedge \theta_2$$

Definition 0.100. A principal frame field on $M \subset \mathbb{R}^3$ is an adapted frame field such that E_1 and E_2 are principal vectors at all points.

Lemma 0.32. If p is not umbilic, then there exists a principal frame field on a neighborhood of $\mathbf{p} \in M$.

Theorem 0.101. For principal frame fields,

$$E_2[k_1] = (k_1 - k_2)\omega_{12}(E_1)$$
$$E_1[k_2] = (k_1 - k_2)\omega_{12}(E_2)$$

$$E_1[k_2] = (k_1 - k_2)\omega_{12}(E_2)$$

6.3: Some Global Theorems

Theorem 0.102. If M is a connected surface with shape operator S = 0 then $M \subseteq$ plane.

Lemma 0.33. If every point of M is umbilic then $K \ge 0$.

Theorem 0.103. If every point of M is umbilic and K > 0 then $M \subseteq$ sphere of radius $1/\sqrt{K}$.

Corollary 0.104. If $M \subset \mathbb{R}^3$ compact and all-umbilic then it is an entire sphere.

Theorem 0.105. On every compact surface $M \subset \mathbb{R}^3$, there exists a point p with K(p) > 0.

Remark 0.106. There does not exist a compact surface with $K \leq 0$.

Theorem 0.107. (*Hilbert*) Suppose there exists a point $m \in M \subset \mathbb{R}^3$ such that

- (i) k_1 has a local max at m
- (ii) k_2 has a local min at m
- (iii) $k_1 > k_2$ at m (so m is not umbilic)

Then $K(m) \leq 0$.

Theorem 0.108. (*Liebman*) If $M \subset \mathbb{R}^3$ is compact with K constant (and necessarily K > 0) then M is a sphere of radius $1/\sqrt{K}$.

6.4: Isometries and Local Isometries

Definition 0.109. Let $\mathbf{p}, \mathbf{q} \in M \subset \mathbf{R}^3$ and $\mathcal{C} = \{\alpha : \alpha \text{ is a curve segment from } \mathbf{p} \text{ to } \mathbf{q}\}$. Then the *intrinsic distance* $\rho(\mathbf{p}, \mathbf{q})$ is define as

$$\rho(\mathbf{p}, \mathbf{q}) = \inf_{\alpha \in \mathcal{C}} L(\alpha)$$

where L is the length operator.

Definition 0.110. An *isometry* $F : M \to \overline{M}$ of surfaces in \mathbb{R}^3 is a one-to-one mapping of M onto \overline{M} that preserves dot products of tangent vectors. If F_* is the derivative map of F, then

$$F_*(\mathbf{v}) \cdot F_*(\mathbf{w}) = \mathbf{v} \cdot \mathbf{w}, \quad \forall \mathbf{v}, \mathbf{w} \in T_p M, \ p \in M$$

Remark 0.111. By remarks in previous chapters, an isometry F is a diffeomorphism.

Theorem 0.112. Isometries preserve intrinsic distance. If $F : M \to \overline{M}$ is an isometry of surfaces in \mathbb{R}^3 ,

$$\rho(\mathbf{p}, \mathbf{q}) = \overline{\rho}(F(\mathbf{p}), F(\mathbf{q}))$$

for $\mathbf{p}, \mathbf{q} \in M$.

Remark 0.113. If there is an isometry between two surfaces, they are said to be isometric.

Definition 0.114. A local isometry $F : M \to N$ of surfaces is a mapping that preserves dot products of tangent vectors.

Thus an isometry is a local isometry that is one-to-one and onto. One may show that a local isometry is an isometry on a neighborhood of points.

Theorem 0.115. Let $F: M \to N$ be a mapping and $X: D \to M$ be a patch. Let $\overline{X} = F(X): D \to N$. Then F is a local isometry if and only if

$$E = \overline{E}, \quad F = \overline{F}, \quad G = \overline{G}$$

Remark 0.116. One may use this result to construct local isometries. I.e. if you have two patches, $\mathbf{x} : D \to M$ and $\mathbf{y} : D \to N$, find a function F such that $F(\mathbf{x}(u,v)) = \mathbf{y}(u,v)$ for $(u,v) \in D$ and with $E = \overline{E}, F = \overline{F}, G = \overline{G}$.

Definition 0.117. A mapping $F: M \to N$ is **conformal** if there exists a real-valued function $\lambda > 0$ on M such that

$$\|F_*(\mathbf{v}_p)\| = \lambda(\mathbf{p}) \|\mathbf{v}_p\|$$

Here λ is called the scale factor.

Note that a local isometry has $\lambda = 1$, so a conformal mapping can be thought of as a generalized isometry.

6.5: Intrinsic Geometry of Surfaces in R³

Intrinsic geometry of a surface refers to its properties which are invariant under isometry.

Lemma 0.34. Let $F: M \to \overline{M}$ be an isometry and let E_1, E_2 be a tangent frame field on M. If $\overline{E}_1, \overline{E}_2$ is the transferred frame field on \overline{M} then

$$\theta_1 = F^*(\overline{\theta}_1), \quad \theta_2 = F^*(\overline{\theta}_2)$$

$$\omega_{12} = F^*(\overline{\omega}_{12})$$

Theorem 0.118. (*Theorema egregium of Gauss*) Gaussian curvature is an isometric invariant. Explicitly, if $F: M \to \overline{M}$ is an isometry, then

$$K(\mathbf{p}) = \overline{K}(F(\mathbf{p})), \, \forall \mathbf{p} \in M$$

6.6: Orthogonal Coordinates

Definition 0.119. The associated frame field E_1, E_2 of an orthogonal patch $(F = 0) \mathbf{x} : D \to M$ consists of

$$E_1 = \frac{\mathbf{x}_u(u, v)}{\sqrt{E(u, v)}} \qquad E_2 = \frac{\mathbf{x}_v(u, v)}{\sqrt{G(u, v)}}$$

Remark 0.120. This yields dual one forms

$$\theta_1 = \sqrt{E}du \qquad \theta_2 = \sqrt{G}dv$$

Proposition 0.121. For an orthogonal patch,

$$K = -\frac{1}{\sqrt{EG}} \left[\left(\frac{(\sqrt{G})_u}{\sqrt{E}} \right)_u + \left(\frac{(\sqrt{E})_v}{\sqrt{G}} \right)_v \right]$$

6.7: Integration and Orientation

One can show that a coordinate patch $\mathbf{x} : D \to M$ distorts the area of a rectangle such that the infinitesimal area is given by $\sqrt{EG - F^2} \Delta u \Delta v$. Thus the area will be found by integrating this over certain subsets of D.

Definition 0.122. For a rectangle $R : a \leq u \leq b, c \leq v \leq d$ with interior $R^{\circ} : a < u < b, c < v < d$, a 2-segment $\mathbf{x} : R \to M$ is **patchlike** is $\mathbf{x} : R^{\circ} \to M$ is a patch in M.

Definition 0.123. A paving of a region \mathcal{P} in a surface M is a finite number of patchlike 2-segments $\mathbf{x}_1, ..., \mathbf{x}_k$ whose images fill M in such a way that each point of M is in at most one set $\mathbf{x}_i(R_i^\circ)$.

Note that an entire compact surface is always pavable and the area of a pavable region is said to be the sum of the areas of its patchlike 2-segments.

Definition 0.124. An area form on a surface M is a differentiable 2-form μ whose value on any pair of tangent vectors is

 $\mu(\mathbf{v}, \mathbf{w}) = \pm \|\mathbf{v} \times \mathbf{w}\|$

Lemma 0.35. A surface M has an area form if and only if it is orientable. On a connected orientable surface there are exactly two area forms, which are negatives of each other.

Definition 0.125. Let v be a 2-form on a pavable oriented region \mathcal{P} in a surface. The *integral* of v over \mathcal{P} is

$$\iint_{\mathcal{P}} v = \sum_{i} \iint_{X_{i}} v$$

where $X_1, ..., X_k$ is a positively oriented paving of \mathcal{P} .

6.8: Total Curvature

Definition 0.126. Let K be Gaussian curvature of a compact surface M oriented by area form dM. Then

$$\iint_M K dM$$

is the total Gaussian curvature of M.

Definition 0.127. Let M and N be surfaces oriented by area forms dM and dN. Then the **Jacobian** of a mapping $F: M \to N$ is the real-valued function J_F on M such that

 $F^*(dN) = J_F dM$

Theorem 0.128. The Gaussian curvature K of an oriented surface $M \subset \mathbb{R}^3$ is the Jacobian of its Gauss map.

Corollary 0.129. The total Gaussian curvature of an oriented surface $M \subset \mathbb{R}^3$ equals the algebraic area of the image of its Gauss map $G: M \to \Sigma$.

Corollary 0.130. Let \mathcal{R} be an oriented region in $M \subset \mathbb{R}^3$ on which

- 1. The Gauss map G is one-to-one and
- 2. Either $K \ge 0$ or $K \le 0$

Then the total curvature of \mathcal{R} is \pm area of $G(\mathcal{R})$ where the sign is that of K.

Definition 0.131. The rotation operator of M is the linear operator J such that

 $J(\mathbf{v}) = U \times \mathbf{v}$

Definition 0.132. Let \mathbf{v}, \mathbf{w} be unit tangent vectors at a point of an oriented surface M. A number ϕ is an **oriented angle** from \mathbf{v} to \mathbf{w} if

 $\mathbf{w} = \cos\phi\mathbf{v} + \sin\phi J(\mathbf{v})$

Lemma 0.36. Let $\alpha : I \to M$ be a curve in an oriented surface M. If V and W are nonvanishing tangent vector fields on α , there is a differentiable function ϕ on I such that for each $t \in I$, $\phi(t)$ is an oriented angle from V(t) to W(t).

Then any non-vanishing vector field V on M determines a positively oriented frame field,

$$E_1 = \frac{V}{\|V\|}$$
 $E_2 = J(E_1) = \frac{J(V)}{\|V\|}$

6.9: Congruence of Surfaces

Two surfaces M and \overline{M} in \mathbb{R}^3 are **congruent** if there is an isometry F of \mathbb{R}^3 that carries M exactly onto \overline{M} .

Theorem 0.133. If **F** is a Euclidean isometry such that $\mathbf{F}(M) = \overline{M}$, then $F = \mathbf{F}|M : M \to \overline{M}$ is an isometry. Furthermore, if M and \overline{M} are suitably oriented, then F preserves shape operators,

$$F_*(S(\mathbf{v})) = \overline{S}(F_*(\mathbf{v}))$$

Theorem 0.134. Let M and \overline{M} be oriented surfaces in \mathbb{R}^3 . Let $F: M \to \overline{M}$ be an isometry that preserves shape operators. Then M and \overline{M} are congruent. In fact, there is a Euclidean isometry \mathbf{F} such that $\mathbf{F}|M = F$.

Ch7: Reimannian Geometry

7.1: Geometric Surfaces

Definition 0.135. A geometric surface is an abstract surface M with an inner product on each tangent plane which varies smoothly.

Definition 0.136. A metric tensor g on M is a function on all ordered pairs of tangent vectors v, w at points $p \in M$ such that

$$g_p(v,w) = \langle v,w \rangle_p$$

Remark 0.137. The metric tensor is like a two-form but symmetric.

Note 0.138. Construction methods for geometric surfaces:

1. Conformal Change: Let h > 0 be differentiable on a region of \mathbb{R}^2 , then redefine the inner product by

$$\langle \mathbf{v}, \mathbf{w} \rangle = \frac{v \cdot w}{h(\mathbf{p})^2}$$

2. **Pullback**: Use inner product on another geometric surface via pullback, $F: M \to N$,

 $\langle \mathbf{v}, \mathbf{w} \rangle_M = \langle F_*(v), F_*(w) \rangle_N$

3. Coordinate Description: For a coordinate patch x on an abstract surface M, defining the functions,

 $E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle$ $F = \langle \mathbf{x}_u, \mathbf{x}_v \rangle$ $G = \langle \mathbf{x}_v, \mathbf{x}_v \rangle$

defines a unique metric tensor on the image of \mathbf{x} .

Note 0.139. As before, dual 1-forms, θ_1, θ_2 are uniquely determined by $\theta_i(E_j) = \delta_{ij}$, and connection form ω_{12} is uniquely determined by the first structural equations,

$$d\theta_1 = \omega_{12} \wedge \theta_2 \qquad d\theta_2 = \omega_{21} \wedge \theta_1$$

Definition 0.140. Let $\{E_1, E_2\}$ and $\{\overline{E}_1, \overline{E}_2\}$ be two choices of frame fields and let φ be the angle between \overline{E}_1 and E_1 . If $\overline{E}_2 = -\sin \varphi E_1 + \cos \varphi E_2$, then the two frame fields are said to have the same orientation. If $\overline{E}_2 = \sin \varphi E_1 - \cos \varphi E_2$ they are said to have opposite orientation.

Lemma 0.37. Let $\{E_1, E_2\}$, $\{\overline{E}_1, \overline{E}_2\}$ be frame fields on the same region of M.

(i) If they have the same orientation,

$$\overline{\omega}_{12} = \omega_{12} + d\varphi \qquad \theta_1 \wedge \theta_2 = \theta_1 \wedge \theta_2$$

(ii) If they have opposite orientation,

 $\overline{\omega}_{12} = -(\omega_{12} + d\varphi) \qquad \overline{\theta}_1 \wedge \overline{\theta}_2 = -\theta_1 \wedge \theta_2$

Definition 0.141. A Reimannian manifold is a manifold furnished with a metric.

7.2: Gaussian Curvature

Need a new definition of Gaussian curvature now that we no longer have a shape operator.

Theorem 0.142. On a geometric surface M, there is a unique real-valued function K such that for every frame field on M, the second structural equation holds,

 $d\omega_{12} = -K\theta_1 \wedge \theta_2$

Definition 0.143. On a geometric surface, define the **Gaussian curvature** to be K such that $d\omega_{12} = -K\theta_1 \wedge \theta_2$.

Corollary 0.144. For the plane \mathbb{R}^2 with metric tensor $\langle \mathbf{v}, \mathbf{w} \rangle = \frac{v \cdot w}{h^2(\mathbf{p})}$, the Gaussian curvature is

$$K = h(h_{uu} + h_{vv}) - (h_u^2 + h_v^2)$$

Proposition 0.145. Let $F: M \to N$ be a regular mapping of a geometric surface M onto a surface N without geometry. Suppose that whenever $F(\mathbf{p}_1) = F(\mathbf{p}_2)$, there is an isometry G_{12} from a neighborhood of \mathbf{p}_1 to a neighborhood of \mathbf{p}_2 such that

$$FG_{12} = F, \qquad G_{12}(\mathbf{p}_1) = \mathbf{p}_2$$

Then there is a unique metric tensor on N that makes F a local isometry.

7.3: Covariant Derivative

Lemma 0.38. Assume there exists a covariant derivative ∇ on M which is linear, Leibnizian and such that $\omega_{12}(V) = \langle \nabla_V E_1, E_2 \rangle$, then ∇ obeys the connection equations,

$$\nabla_V E_1 = \omega_{12}(V)E_2 \qquad \nabla_V E_2 = \omega_{12}(V)E_1$$

Furthermore, for a vector field $W = f_1 E_1 + f_2 E_2$,

$$\nabla_V W = (V[f_1] + f_2 \omega_{21}(V)) E_1 + (V[f_2] + f_1 \omega_{12}(V)) E_2$$

called the covariant derivative formula.

Theorem 0.146. On each geometric surface M there exists a unique covariant derivative ∇ in the linear and Leibnizian properties satisfying $\omega_{12}(V) = \langle \nabla_V E_1, E_2 \rangle$.

Definition 0.147. A vector field V on a curve α in a geometric surface is **parallel** provided its covariant derivative vanishes, V' = 0.

Note 0.148. For $Y = f_1E_1 + f_2E_2$ along curve α , we write

$$Y' = (f_1' + f_2\omega_{21}(\alpha'))E_1 + (f_2' + f_1\omega_{12}(\alpha'))E_2$$

Lemma 0.39. Let α be a curve in a geometric surface M, and let \mathbf{v} be a tangent vector at $\mathbf{p} = \alpha(t_0)$. Then there is a unique parallel vector field V on α such that $V(t_0) = \mathbf{v}$.

Remark 0.149. For a parallel vector field V on α , we say $\alpha(t)$ is gotten from v at $\mathbf{p} = \alpha(t_0)$ by parallel transportation along α .

Definition 0.150. If $\alpha : [a,b] \to M$ is a closed curve in the domain of a frame field, $\varphi' + \omega_{12}(\alpha') = 0$ leads us to define the **holonomy angle** ψ_{α} of α as

$$\psi_{\alpha} = \varphi(b) - \varphi(a) = -\int_{\alpha} \omega_{12}$$

Lemma 0.40. (Connection between covariant derivatives on a geometric surface and \mathbb{R}^3) If V and W are tangent vector fields on a surface M in \mathbb{R}^3 , then

- 1. $\nabla_V W$ is the component of $\tilde{\nabla}_V W$ tangent to M.
- 2. If S is the shape operator of M derived from a unit normal U, then

$$\nabla_V W = \nabla_V W + (S(V) \cdot W)U$$

7.4: Geodesics

Definition 0.151. A curve in a geometric surface is a geodesic provided its acceleration is zero, $\gamma'' = 0$.

Remark 0.152. The velocity of a geodesic is parallel, i.e. they never turn.

Remark 0.153. As acceleration is preserved by isometry, geodesics are isometric invariants.

Theorem 0.154. Write $\alpha'' = A_1E_1 + A_2E_2$ where A_1, A_2 are real-valued functions. Let \mathbf{x} be an orthogonal patch in a geometric surface M. A curve $\alpha(t) = x(a_1(t), a_2(t))$ is a geodesic of M iff

$$A_{1} = a_{1}'' + \frac{1}{2E} \left(E_{u} a_{1}'^{2} + 2E_{v} a_{1}' a_{2}' - G_{u} a_{2}'^{2} \right) = 0$$
$$A_{2} = a_{2}'' + \frac{1}{2G} \left(-E_{v} a_{1}'^{2} + 2G_{u} a_{1}' a_{2}' + G_{v} a_{2}'^{2} \right) = 0$$

Theorem 0.155. Given a tangent vector \mathbf{v} to M at a point \mathbf{p} , there is a unique geodesic γ defined on an interval I around 0 such that $\gamma(0) = \mathbf{p}$ and $\gamma'(0) = \mathbf{v}$.

Definition 0.156. A geometric surface is **complete** provided every maximal geodesic in M is defined on the whole real line \mathbb{R} .

Lemma 0.41. Let E_1 , E_2 be a frame field and let α be a constant speed curve such that α' and E_2 are never orthogonal. If $A_1 = 0$ then $A_2 = 0$, hence α is a geodesic.

Definition 0.157. Let α be a unit-speed curve in $M \subset \mathbb{R}^3$, U be a unit normal vector field restricted to α , and $V = U \times \alpha''$. Then the **geodesic curvature** κ_g of α is the function such that

$$\alpha'' = \kappa_a V + kU$$

where $k = S(T) \cdot T$ is the normal curvature of M in the T direction.

Corollary 0.158. Let β be a unit speed curve in a region oriented by a frame field E_1, E_2 . If φ is an angle function from E_1 to β' along β , then

$$\kappa_g = \frac{d\varphi}{ds} + \omega_{12}(\beta')$$

Lemma 0.42. A regular speed curve α in M is a geodesic if and only if α has constant speed and geodesic curvature, $\kappa_q = 0$.

7.5: Clairaut Parametrizations

Definition 0.159. A Clairaut parametrization $\mathbf{x} : D \to M$ is an orthogonal parametrization for which E and G depend only on u. I.e. F = 0, $E_v = G_v = 0$.

Lemma 0.43. If x is a Clairaut parametrization, then

- 1. All the u-parameter curves are pregeodesics.
- 2. A v-parameter curve $u = u_0$ is a geodesic iff $G_u(u_0) = 0$.

Theorem 0.160. Let $\alpha = \mathbf{x}(a_1, a_2)$ be a unit-speed geodesic with \mathbf{x} a Clairaut parametrization. If φ is the angle from x_u to α' then the function

$$c = G(a_1)a'_2 = \sqrt{G(a_1)}\sin\varphi$$

is constant along α . Hence α cannot leave the region where $G \ge c^2$.

Definition 0.161. $c = c(\alpha)$ from above is called the **slant** of α as it determines the angle φ at which α cuts across the meridians.

Proposition 0.162. If **x** is a Clairaut parametrization, then every geodesic α such that α' is never orthogonal to meridians can be parametrized as $\beta(u) = \mathbf{x}(u, v(u))$ where

$$\frac{dv}{du} = \pm \frac{c\sqrt{E}}{\sqrt{G}\sqrt{G-c^2}}$$

with c the slant of α . Hence by the fundamental theorem of calculus,

$$v(u) = v(u_0) \pm \int_{u_0}^u \frac{c\sqrt{E}dt}{\sqrt{G}\sqrt{G-c^2}}$$

7.6: Gauss-Bonnet Theorem

Definition 0.163. Let $\alpha : [a,b] \to M$ be a regular curve segment in an oriented geometric surface M. The total geodesic curvature of α is

$$\int_{\alpha} \kappa_g ds = \int_{s(a)}^{s(b)} \kappa_g(s(t)) \frac{ds}{dt} dt$$

Lemma 0.44. Let $\alpha : [a,b] \to M$ be a regular curve segment in a region of M oriented by a frame field E_1, E_2 . Then

$$\int_{\alpha} \kappa_g ds = \varphi(b) - \varphi(a) + \int_{\alpha} \omega_{12}$$

where φ is an angle function from E_1 to α' along α and ω_{12} is the connection form of E_1, E_2 .

Definition 0.164. Let $\mathbf{x} : R \to M$ be a one-to-one regular 2-segment with vertices $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4$. The **exterior angle** ε_j of \mathbf{x} at \mathbf{p}_j $(1 \leq j \leq 4)$ is the turning angle at \mathbf{p}_j derived from the edge curves $\alpha, \beta, -\gamma, -\delta, \alpha, \dots$ in order of occurrence in \mathbf{x} . The **interior angle** l_j at \mathbf{p}_j is $\pi - \varepsilon_j$.

Theorem 0.165. Let $\mathbf{x} : R \to M$ be a one-to-one regular 2-segment in a geometric surface M. If dM is the area form determined by \mathbf{x} , then

$$\iint_{\mathbf{x}} K dM + \int_{\partial \mathbf{x}} \kappa_g ds + \varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4 = 2\pi$$

where ε_j is the exterior angle at the vertex \mathbf{p}_j of \mathbf{x} $(1 \leq j \leq 4)$. This formula can be written in terms of interior angles as

$$\iint_{\mathbf{x}} KdM + \int_{\partial \mathbf{x}} \kappa_g ds = l_1 + l_2 + l_3 + l_4 - 2\pi$$

Definition 0.166. A rectangular decomposition \mathcal{D} of a surface M is a finite collection of one-to-one regular 2-segments $\mathbf{x}_1, ..., \mathbf{x}_f$ whose images cover M in such a way that if any two intersect, they do so in either a single common vertex or a single common edge.

Theorem 0.167. Every compact surface M has a rectangular decomposition.

Theorem 0.168. If \mathcal{D} is a rectangular decomposition of a compact surface M, let v, e, and f be the number of vertices, edges and faces in \mathcal{D} . Then the integer v - e + f is the same for every rectangular decomposition of M. This integer $\chi(M)$ is called the **Euler characteristic** of M.

Definition 0.169. $\Sigma[h]$ is the surface obtained by taking a sphere and adding h handles to it.

Theorem 0.170. If M is a compact, connected, orientable surface, there is a unique integer $h \ge 0$ such that M is diffeomorphic to $\Sigma[h]$.

Corollary 0.171. Compact orientable surfaces M and N have the same Euler characteristic iff they are diffeomorphic.

Theorem 0.172. (Gauss-Bonnet) The total Gaussian curvature of a compact orientable geometric surface M is 2π times its Euler characteristic:

$$\iint_M K dM = 2\pi \chi(M)$$

Note 0.173. This links the topology and geometry of a surface, implying that the total Gaussian curvature is a topological invariant.

7.7: Applications of Gauss-Bonnet

Definition 0.174. An oriented polygonal region \mathcal{P} in a surface M is a (necessarily compact) oriented region furnished with a positively oriented rectangular decomposition $\mathbf{x}_1, ..., \mathbf{x}_f$.

Definition 0.175. A boundary segment of \mathcal{P} is a curve segment β that is an edge curve of exactly one of the rectangles $\mathbf{x}_i(R_i)$. For simplicity we add the requirement that a vertex of the decomposition cannot belong to more than the boundary segments.

Definition 0.176. The oriented boundary $\partial \mathcal{P}$ of an oriented polygonal region \mathcal{P} is the formal sum of the simple closed, oriented polygonal curves β_i described above:

 $\partial \mathcal{P} = \beta_1 + \dots + \beta_k$

Theorem 0.177. (Generalized Stokes' Theorem) If ϕ is a 1-form on an oriented polygonal region \mathcal{P} , then

$$\iint_{\mathcal{P}} d\phi = \int_{\partial \mathcal{P}} \phi$$

In particular, if \mathcal{P} is an entire compact oriented surface M, then $\iint_M d\phi = 0$.

Corollary 0.178. The following properties of a compact orientable surfaces surface are equivalent:

- 1. There is a non-vanishing tangent vector field on M.
- 2. $\chi(M) = 0$
- 3. M is diffeomorphic to a torus.

Theorem 0.179. If \mathcal{P} is an oriented polygonal region in a geometric surface, then

$$\iint_{\mathcal{P}} KdM + \int_{\partial \mathcal{P}} \kappa_g ds + \sum \varepsilon_j = 2\pi \chi(\mathcal{P})$$

where $\sum \varepsilon_i$ is the sum of the exterior angles of all the closed boundary curves comprising $\partial \mathcal{P}$.

Corollary 0.180. If Δ is a triangle in an oriented geometric surface M, then

$$\iint_{\Delta} K dM + \int_{\partial \Delta} \kappa_g ds = 2\pi - (\varepsilon_1 + \varepsilon_2 + \varepsilon_3) = (l_1 + l_2 + l_3) - \pi$$

Definition 0.181. A point \mathbf{p} is an isolated singular point of a vector field V is V is nonvanishing and differentiable on some neighborhood \mathcal{N} of \mathbf{p} , except at the point \mathbf{p} itself.

Definition 0.182. Let $\alpha : [a,b] \to C$ be a parametrization of the boundary C as the oriented boundary $\partial \mathcal{D}$ of \mathcal{D} . Let $\varphi = \langle_{\alpha}(X,V) \rangle$ be an angle function from X_{α} to V_{α} (these vector fields restricted to α) for some smooth vector field X with no singularities anywhere in \mathcal{D} . Then $\varphi(b) - \varphi(a)$ is called the **total rotation** and is a multiple of 2π .

Definition 0.183. The index of V at p is the integer

$$ind(V,p) = rac{\varphi(b) - \varphi(a)}{2\pi}$$

Theorem 0.184. (Poincare-Hopf) Let V be a vector field on a compact oriented surface M. If V is differentiable and non-vanishing except at isolated singular points $p_1, ..., p_k$ then the Euler characteristic of M is the sum of their indices

$$\chi(M) = \sum_{i=1}^{K} ind(V, p_i)$$