Notes for Elementary Differential Geometry by O'Neill

Kevin O'Connor

Ch1: Calculus on Euclidean Space

1.3: Directional Derivatives

Definition 0.1. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be differentiable and \mathbf{v}_{p} be a tangent vector to \mathbb{R}^{3}, then the directional derivative of f with respect to \mathbf{v}_{p} is defined as

$$
\mathbf{v}_{p}[f]=\left.\frac{d}{d t}(f(\mathbf{p}+t \mathbf{v}))\right|_{t=0}
$$

Lemma 0.1. If $\mathbf{v}_{p}=\left(v_{1}, v_{2}, v_{3}\right) \in T_{p} \mathbb{R}^{3}$, then

$$
\mathbf{v}_{p}[f]=\sum_{i} v_{i} \frac{\partial f}{\partial x_{i}}(\mathbf{p})
$$

Theorem 0.2. Let f and g be functions on $\mathbb{R}^{3}, \mathbf{v}_{p}$ and \mathbf{w}_{p} be tangent vectors, and a and b numbers. Then

1. $\left(a \mathbf{v}_{p}+b \mathbf{w}_{p}\right)[f]=a \mathbf{v}_{p}[f]+b \mathbf{w}_{p}[f]$.
2. $\mathbf{v}_{p}[a f+b g]=a \mathbf{v}_{p}[f]+b \mathbf{v}_{p}[g]$.
3. $\mathbf{v}_{p}[f g]=\mathbf{v}_{p}[f] \cdot g(\mathbf{p})+f(\mathbf{p}) \cdot \mathbf{v}_{p}[g]$.

1.4: Curves in \mathbb{R}^{3}

Definition 0.3. A curve in \mathbb{R}^{3} is a differentiable function $\alpha: I \rightarrow \mathbb{R}^{3}$ from an open interval I into \mathbb{R}^{3}.

Definition 0.4. Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a curve. If $h: J \rightarrow I$ is a differentiable function on an open interval J, then the composite function

$$
\beta=\alpha(h): J \rightarrow \mathbb{R}^{3}
$$

is a curve called a reparametrization of α by h.
Lemma 0.2. If β is a reparametrization of α by h, then

$$
\beta^{\prime}(s)=\left(\frac{d h}{d s}\right)(s) \alpha^{\prime}(h(s))
$$

Lemma 0.3. Let α be a curve in \mathbb{R}^{3} and let f be a differentiable function on \mathbb{R}^{3}, then

$$
\alpha^{\prime}(t)[f]=\frac{d(f(\alpha))}{d t}(t)
$$

1.5: 1-forms

Definition 0.5. A 1-form $\phi: T_{p} \mathbb{R}^{3}$ is a function on the set of all tangent vectors to \mathbb{R}^{3} such that ϕ is linear at each point. I.e.

$$
\phi(a \mathbf{v}+b \mathbf{w})=a \phi(\mathbf{v})+b \phi(\mathbf{w})
$$

Definition 0.6. If $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is differentiable then the differential df of f is the 1 -form such that

$$
d f\left(\mathbf{v}_{p}\right)=\mathbf{v}_{p}[f], \quad \forall \mathbf{v}_{p} \in T_{p} \mathbb{R}^{3}
$$

Lemma 0.4. If f is a differentiable function on \mathbb{R}^{3}, then

$$
d f=\sum_{i} \frac{\partial f}{\partial x_{i}} d x_{i}
$$

Lemma 0.5. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable functions. Then the composite function $h(f): \mathbb{R}^{3} \rightarrow \mathbb{R}$ is also differentiable. Then

$$
d(h(f))=h^{\prime}(f) d f
$$

1.6: Differential Forms

Multiplication for differential forms is antisymmetric. So

$$
d x_{i} d x_{j}=-d x_{j} d x_{i}
$$

which implies that $d x_{i} d x_{i}=0$. Now note that

- A 0 -form is a differentiable function f.
- A 1-form is an expression $f d x+g d y+h d z$.
- A 2-form is an expression $f d x d y+g d x d z+h d y d z$.
- A 3-form is an expression $f d x d y d z$.

Lemma 0.6. If ϕ and ψ are 1 -forms, then
$\phi \wedge \psi=-\psi \wedge \phi$
Definition 0.7. If $\phi=\sum f_{i} d x_{i}$ is a 1-form on \mathbb{R}^{3}, the exterior derivative of ϕ is the 2-form $d \phi=\sum d f_{i} \wedge d x_{i}$.

Theorem 0.8. Let f and g be functions, ϕ and ψ be 1-forms. Then

1. $d(f g)=d f g+f d g$.
2. $d(f \phi)=d f \wedge \phi+f d \phi$.
3. $d(\phi \wedge \psi)=d \phi \wedge \psi-\phi \wedge d \psi$.

Ch2: Frame Fields

2.2: Curves

Theorem 0.9. If α is a regular curve in \mathbb{R}^{3}, then there exists a reparametrization β of α such that β is unit-speed.

2.3: The Frenet Formulas

Theorem 0.10. (Frenet formulas): If $\beta: I \rightarrow \mathbb{R}^{3}$ is a unit-speed curve with curvature $\kappa>0$, then

$$
\left[\begin{array}{l}
T^{\prime} \\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right]
$$

Corollary 0.11. Let β be a unit-speed curve in \mathbb{R}^{3} with $\kappa>0$. Then β is a plane curve if and only if $\tau=0$.

Lemma 0.7. If β is a unit-speed curve with constant curvature $\kappa>0$ and $\tau=0$, then β is part of a circle with radius $1 / \kappa$.

2.4: Arbitrary Speed Curves

Theorem 0.12. (Frenet formulas): If $\alpha: I \rightarrow \mathbb{R}^{3}$ is a regular curve with curvature $\kappa>0$, then

$$
\left[\begin{array}{l}
T^{\prime} \\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa v & 0 \\
-\kappa v & 0 & \tau v \\
0 & -\tau v & 0
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right]
$$

Theorem 0.13. Let α be a regular curve in \mathbb{R}^{3}. Then

$$
T=\frac{\alpha^{\prime}}{\left\|\alpha^{\prime}\right\|} \quad N=B \times T \quad B=\frac{\alpha^{\prime} \times \alpha^{\prime \prime}}{\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|}
$$

and

$$
\kappa=\frac{\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|}{\left\|\alpha^{\prime}\right\|^{3}} \quad \tau=\frac{\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \cdot \alpha^{\prime \prime \prime}}{\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|^{2}}
$$

Definition 0.14. A regular curve α in \mathbb{R}^{3} is a cylindrical helix if T has constant angle θ with some fixed unit vector \mathbf{u}. I.e. $T(t) \cdot \mathbf{u}=\cos \theta, \forall t$.

Theorem 0.15. A regular curve α with $\kappa>0$ is a cylindrical helix if and only if the ratio τ / κ is constant.

2.5: Covariant Derivatives

Definition 0.16. Let W be a vector field on \mathbb{R}^{3} and \mathbf{v} be a tangent vector field to \mathbb{R}^{3} at point p. Then the covariant derivative of W with respect to \mathbf{v} is

$$
\nabla_{v} W=W(\mathbf{p}+t \mathbf{v})^{\prime}(0)
$$

Lemma 0.8. If $W=\left(w_{1}, w_{2}, w_{3}\right)$ is a vector field on \mathbb{R}^{3} and \mathbf{v} is a tangent vector at t then

$$
\nabla_{v} W=\left(\mathbf{v}\left[w_{1}\right], \mathbf{v}\left[w_{2}\right], \mathbf{v}\left[w_{3}\right]\right)
$$

Theorem 0.17. Let \mathbf{v} and \mathbf{w} be tangent vectors to \mathbb{R}^{3} at । and let Y and Z be vector fields on \mathbb{R}^{3}. Then for numbers a, b and functions f,

1. $\nabla_{a v+b w} Y=a \nabla_{v} Y+b \nabla_{w} Y$.
2. $\nabla_{v}(a Y+b Z)=a \nabla_{v} Y+b \nabla_{v} Z$.
3. $\nabla_{v}(f Y)=\mathbf{v}[f] Y(\mathbf{p})+f(\mathbf{p}) \nabla_{v} Y$.
4. $\mathbf{v}[Y \cdot Z]=\nabla_{v} Y \cdot Z(\mathbf{p})+Y(\mathbf{p}) \cdot \nabla_{v} Z$.

Ch3: Euclidean Geometry

3.5: Congruence of Curves

Definition 0.18. Two curves $\alpha, \beta: I \rightarrow \mathbb{R}^{3}$ are congruent if there exists an isometry F of \mathbb{R}^{3} such that $\beta=F(\alpha)$.

Theorem 0.19. If $\alpha, \beta: I \rightarrow \mathbb{R}^{3}$ are unit-speed curves such that $\kappa_{\alpha}=\kappa_{\beta}$ and $\tau_{\alpha}= \pm \tau_{\beta}$, then α and β are congruent.

Corollary 0.20. Let α be a unit-speed curve in \mathbb{R}^{3}. Then α is a helix if and only if both its curvature and torsion are nonzero constants.

Corollary 0.21. Let $\alpha, \beta: I \rightarrow \mathbb{R}^{3}$ be arbitrary-speed curves. If

$$
v_{\alpha}=v_{\beta}>0 \quad \kappa_{\alpha}=\kappa_{\beta}>0 \quad \tau_{\alpha}= \pm \tau_{\beta}
$$

then the curves α and β are congruent.

Ch4: Calculus on a Surface

4.1: Surfaces in \mathbb{R}^{3}

Recall that a mapping is a function whose coordinates are differentiable.
Definition 0.22. A coordinate patch $\mathbf{x}: D \rightarrow \mathbb{R}^{3}$ is a one-to-one regular mapping of an open set D of \mathbb{R}^{2} into \mathbb{R}^{3}.

Remark 0.23. Regularity of a mapping can be checked by ensuring that $\mathbf{x}_{u} \times \mathbf{x}_{v} \neq 0$ everywhere.
Definition 0.24. A surface in \mathbb{R}^{3} is a subset M of \mathbb{R}^{3} such that for each point $\mathbf{p} \in M$, there exists a proper patch in M whose image contains a neighborhood of \mathbf{p}.

Theorem 0.25. Let g be a differentiable real-valued function on \mathbb{R}^{3} and c a number. Then $M: g(x, y, z)=c$ is a surface if the $d g \neq 0$ at every point.

4.2: Patch Computations

Definition 0.26. Denote by \mathbf{x}_{u} and \mathbf{x}_{v} the respective partial derivatives (velocities) of the u and v parameter curves.

Definition 0.27. A regular mapping $\mathbf{x}: D \rightarrow \mathbb{R}^{3}$ whose image lies in a surface M is called a parametrization of the region $\mathbf{x}(D)$ in M.

So when we relax the one-to-one condition on a coordinate patch, we get a parametrization.
Definition 0.28. A ruled surface is a surface swept out by a straight line L moving along a curve β. The various positions of the generating line L are called the rulings of the surface. Such a surface always has a ruled parametrization

$$
\mathbf{x}(u, v)=\beta(u)+v \delta(u)
$$

where δ points along L.

4.3: Differentiable Functions and Tangent Vectors

Definition 0.29. A function $f: M \rightarrow \mathbb{R}$ is differentiable if for any coordinate patch \mathbf{x}, $f(\mathbf{x}): D \rightarrow \mathbb{R}$ is differentiable in the usual Euclidean sense. Likewise we extend this to functions $F: M \rightarrow \mathbb{R}^{n}$.

Lemma 0.9. If $\alpha: I \rightarrow M$ is a curve whose route lies in the image $\mathbf{x}(D)$ of a single patch \mathbf{x}, then there exist unique differentiable functions a_{1}, a_{2} on I such that

$$
\alpha(t)=\mathbf{x}\left(a_{1}(t), a_{2}(t)\right), \quad \forall t \in I
$$

Theorem 0.30. If $M \subset \mathbb{R}^{3}$ is a surface and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{3}$ is a differentiable mapping whose image lies in M, then considered as a mapping $F: \mathbb{R}^{n} \rightarrow M$ into M, F is differentiable.

Corollary 0.31. (Smooth overlap) If \mathbf{x} and \mathbf{y} are patches in a surface $M \subset \mathbb{R}^{3}$ whose images overlap then the composite functions $\mathbf{x}^{-1} \mathbf{y}$ and $\mathbf{y}^{-1} \mathbf{x}$ are (differentiable) mappings defined on open sets of \mathbb{R}^{2}.
Corollary 0.32. If \mathbf{x} and \mathbf{y} are overlapping patches in M, then there exist unique differentiable functions \bar{u} and \bar{v} such that

$$
\mathbf{y}(u, v)=\mathbf{x}(\bar{u}(u, v), \bar{v}(u, v))
$$

Definition 0.33. Let $\mathbf{p} \in M \subset \mathbb{R}^{3}$. A tangent vector \mathbf{v} in \mathbb{R}^{3} is tangent to M at \mathbf{p} if \mathbf{v} is a velocity vector of some curve in M.

The set of all tangent vectors to M at a point $\mathbf{p} \in M$ will be denoted $T_{p} M$.
Lemma 0.10. If $\mathbf{p} \in M$ and $\mathbf{x}\left(u_{0}, v_{0}\right)=\mathbf{p}$, then any $\mathbf{v} \in T_{p} M$ can be written as a linear combination of $\mathbf{x}_{u}\left(u_{0}, v_{0}\right)$ and $\mathbf{x}_{v}\left(u_{0}, v_{0}\right)$.
Lemma 0.11. If $M: g=c$ is a surface in \mathbb{R}^{3}, then the gradient vector field, ∇g, is a nonvanishing normal vector field on M.
Definition 0.34. Let $\mathbf{v} \in T_{p} M$ and $f: M \rightarrow \mathbb{R}$ be differentiable. Then define

$$
\mathbf{v}[f]=\frac{d}{d t}(f \alpha)(0)
$$

for all curves α in M with initial velocity \mathbf{v}.

4.4: Differential Forms on a Surface

Definition 0.35. A 2-form $\eta: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ on a surface M is a real-valued function on all ordered pairs of tangent vectors on M such that

1. $\eta(\mathbf{v}, \mathbf{w})$ is linear in \mathbf{v} and \mathbf{w}.
2. $\eta(\mathbf{v}, \mathbf{w})=-\eta(\mathbf{w}, \mathbf{v})$.

Note that this definition implies that $\eta(\mathbf{v}, \mathbf{v})=0, \forall \mathbf{v} \in T_{p} M$.
Definition 0.36. If ϕ and ψ are 1 -forms on a surface M, the wedge product $\phi \wedge \psi$ is the 2-form on M such that

$$
(\phi \wedge \psi)(\mathbf{v}, \mathbf{w})=\phi(\mathbf{v}) \psi(\mathbf{w})-\phi(\mathbf{w}) \psi(\mathbf{v}), \quad \forall \mathbf{v}, \mathbf{w} \in T_{p} M
$$

In general, if ξ is a p-form and η is a q-form,

$$
\xi \wedge \eta=(-1)^{p q} \eta \wedge \xi
$$

Definition 0.37. Let ϕ be a 1-form on M. Then the exterior derivative $d \phi$ of ϕ is the 2-form such that for any patch \mathbf{x} in M,

$$
d \phi\left(\mathbf{x}_{u}, \mathbf{x}_{v}\right)=\frac{\partial}{\partial u}\left(\phi\left(\mathbf{x}_{v}\right)\right)-\frac{\partial}{\partial v}\left(\phi\left(\mathbf{x}_{u}\right)\right)
$$

It can be shown that this definition agrees on overlaps between patches.
Theorem 0.38. If $f: M \rightarrow \mathbb{R}$ is a function, then $d(d f)=0$.
Definition 0.39. A differential form ϕ is closed if $d \phi=0$.
Definition 0.40. A differential form ϕ is exact if $\phi=d \xi$ for some differential form ξ.

4.5: Mappings of Surfaces

Definition 0.41. A function $F: M \rightarrow N$ between surfaces is differentiable if for each patch \mathbf{x} in M and \mathbf{y} in $N, \mathbf{y}^{-1} F \mathbf{x}$ is differentiable in the Euclidean sense. F is then called a mapping of surfaces.

Definition 0.42. Let $F: M \rightarrow N$ be a mapping of surfaces. Then the tangent map F_{*} : $T_{p} M \rightarrow T_{F(p)} N$ of F is defined such that if α is a curve in M with $\alpha^{\prime}(0)=\mathbf{v} \in T_{p} M$, then $F_{*}(\mathbf{v})=F(\alpha)^{\prime}(0)$.

Definition 0.43. A mapping $F: M \rightarrow N$ with a inverse is called a diffeomorphism.
Theorem 0.44. Let $F: M \rightarrow N$ be a mapping of surfaces and suppose that $F_{* p}: T_{p}(M) \rightarrow$ $T_{F(p)} N$ is a linear isomorphism at some point $\mathbf{p} \in M$. Then there exists a neighborhood \mathcal{U} of \mathbf{p} such that the restriction of F to \mathcal{U} is a diffeomorphism onto a neighborhood \mathcal{V} of $F(\mathbf{p}) \in M$.

This implies that a one-to-one regular mapping F of M onto N is a diffeomorphism.

When there is a diffeomorphism between two surfaces, we say that they are diffeomorphic.
Definition 0.45. Let $F: M \rightarrow N$ be a mapping of surfaces.

1. If ϕ is a 1-form on N, let $F^{*} \phi$ be the 1-form on M such that

$$
\left(F^{*} \phi\right)(\mathbf{v})=\phi\left(F_{*} \mathbf{v}\right), \quad \forall \mathbf{v} \in T_{p} M
$$

2. If η is a 2-form on N, let $F^{*} \eta$ be the 2-form on M such that

$$
\left(F^{*} \eta\right)(\mathbf{v}, \mathbf{w})=\eta\left(F_{*} \mathbf{v}, F_{*} \mathbf{w}\right), \quad \forall \mathbf{v}, \mathbf{w} \in T_{p} M
$$

Theorem 0.46. Let $F: M \rightarrow N$ be a mapping of surfaces and let ξ and η be forms on N. Then

1. $F^{*}(\xi+\eta)=F^{*} \xi+F^{*} \eta$.
2. $F^{*}(\xi \wedge \eta)=F^{*} \xi \wedge F^{*} \eta$.
3. $F^{*}(d \xi)=d\left(F^{*} \xi\right)$.

4.6: Integration of Forms

Definition 0.47. Let ϕ be a 1-form on M and let $\alpha:[a, b] \rightarrow M$ be a curve segment in M. Then define

$$
\int_{\alpha} \phi=\int_{[a, b]} \alpha^{*} \phi=\int_{a}^{b} \phi\left(\alpha^{\prime}(t)\right) d t
$$

Theorem 0.48. Let f be a function on M and let $\alpha:[a, b] \rightarrow M$ be a curve segment in M from $\mathbf{p}=\alpha(a)$ to $\mathbf{q}=\alpha(b)$. Then

$$
\int_{\alpha} d f=f(\mathbf{q})-f(\mathbf{p})
$$

Importantly, the result above does not depend on the path chosen from \mathbf{p} to \mathbf{q}.
Definition 0.49. Let η be a 2-form on M and let $\mathbf{x}: R \rightarrow M$ be a 2-segment in M. Then define

$$
\iint_{\mathbf{x}} \eta=\iint_{R} \mathbf{x}^{*} \eta=\int_{a}^{b} \int_{c}^{d} \eta\left(\mathbf{x}_{u}, \mathbf{x}_{v}\right) d u d v
$$

Definition 0.50. Let $\mathbf{x}: R \rightarrow M$ be a 2-segment in M with R the closed rectangle $a \leqslant u \leqslant$ $b, c \leqslant v \leqslant d$. The edge curves of \mathbf{x} are the curve segments $\alpha, \beta, \gamma, \delta$ such that

$$
\begin{aligned}
& \alpha(u)=\mathbf{x}(u, c) \\
& \beta(v)=\mathbf{x}(b, v) \\
& \gamma(u)=\mathbf{x}(u, d) \\
& \delta(v)=\mathbf{x}(a, v)
\end{aligned}
$$

Definition 0.51. The boundary $\partial \mathrm{x}$ of the 2-segment \mathbf{x} is

$$
\partial \mathbf{x}=\alpha+\beta-\gamma-\delta
$$

Theorem 0.52. (Stokes' Theorem) If ϕ is a 1-form on M and $\mathbf{x}: R \rightarrow M$ is a 2-segment, then

$$
\iint_{\mathbf{x}} d \phi=\int_{\partial \mathbf{x}} \phi
$$

Lemma 0.12. Let $\alpha(h):[a, b] \rightarrow M$ be a reparametrization of a curve segment $\alpha:[c, d] \rightarrow M$ by $h:[a, b] \rightarrow[c, d]$. For any 1 -form ϕ on M,

1. If h is orientation-preserving, i.e. $h(a)=c$ and $h(b)=d$, then

$$
\int_{\alpha(h)} \phi=\int_{\alpha} \phi
$$

2. If h is orientation-reversing, i.e. $h(a)=d$ and $h(b)=c$, then

$$
\int_{\alpha(h)} \phi=-\int_{\alpha} \phi
$$

4.7: Topological Properties of Surfaces

Definition 0.53. A surface is connected if $\forall \mathbf{p}, \mathbf{q} \in M$, there exists a curve segment in M from \mathbf{p} to \mathbf{q}.
Lemma 0.13. A surface M is compact if and only if it can be covered by the images of a finite number of 2-segments.
Lemma 0.14. A continuous function f on a compact region \mathcal{R} in a surface M takes on a maximum at some point of M.
Definition 0.54. A surface M is orientable if there exists a differentiable (or merely continuous) 2-form μ on M that is nonzero at every point of M.
Theorem 0.55. A surface $M \subset \mathbb{R}^{3}$ is orientable if and only if there exists a unit normal vector field on M. If M is connected and orientable, there are exactly two unit normals, $\pm U$.
Definition 0.56. A closed curve α in M is homotopic to a constant if there is a 2-segment $\mathbf{x}: R \rightarrow M$ (called a homotopy) defined on $R: a \leqslant u \leqslant b, 0 \leqslant v \leqslant 1$ such that α is the base curve of \mathbf{x} and the other three edge curves are constant at $\mathbf{p}=\alpha(a)=\alpha(b)$.
The way to think a curve being homotopic to a constant is that when $v=0$, we get the base curve $\alpha(u)$. But as we increase v, the curve shrinks, maintaining the endpoints $\alpha(a)=\alpha(b)=\mathbf{p}$. When we set $v=1$, the curve is constant at $\alpha(u)=\mathbf{p}$.
Definition 0.57. A surface M is simply connected if it is connected and every loop in M is homotopic to a constant.
Here a loop is a curve such that $\alpha(a)=\alpha(b)=\mathbf{p}$ but not necessarily $\alpha^{\prime}(a)=\alpha^{\prime}(b)$.
Lemma 0.15. Let ϕ be a closed 1 -form on a surface M. If a loop α in M is homotopic to a constant, then

$$
\int_{\alpha} \phi=0
$$

Lemma 0.16. (Poincare) On a simply connected surface, every closed 1-form is exact.
Theorem 0.58. A compact surface in \mathbb{R}^{3} is orientable.
Theorem 0.59. A simply connected surface is orientable.

4.8: Manifolds

Now we construct surfaces without an embedding space. We will use the notion of an abstract patch which is simply a one-to-one function from an open set $D \subset \mathbb{R}^{2}$ into M.
Definition 0.60. A surface is a set M with a collection \mathcal{P} of abstract patches satisfying:

1. The covering axiom: The images of the patches in the collection \mathcal{P} cover M.
2. The smooth overlap axiom: $\forall \mathbf{x}, \mathbf{y} \in \mathcal{P}$, the composite functions, $\mathbf{y}^{-1} \mathbf{x}$ and $\mathbf{x}^{-1} \mathbf{y}$ are Euclidean differentiable and defined on open sets of \mathbb{R}^{2}.
3. Hausdorff axiom: $\forall \mathbf{p}, \mathbf{q} \in M$ with $\mathbf{p} \neq \mathbf{q}$, there exist disjoint (non-overlapping) patches \mathbf{x} and \mathbf{y} with $\mathbf{p} \in \mathbf{x}(D)$ and $\mathbf{q} \in \mathbf{y}(E)$.
Definition 0.61. Let $\alpha: I \rightarrow M$ be a curve in an abstract surface M. For each $t \in I$, the velocity vector $\alpha^{\prime}(t)$ is defined such that

$$
\alpha^{\prime}(t)[f]=\frac{d(f \alpha)}{d t}(t)
$$

for every differentiable $f: M \rightarrow \mathbb{R}$.
Definition 0.62. An \boldsymbol{n}-dimensional manifold M is an abstract surface where the abstract patches map from $D \rightarrow M$ where D is an open subset of \mathbb{R}^{n}.

Ch5: Shape Operators

Two surfaces in \mathbb{R}^{3} have the same shape (i.e. "same" shape operator) iff they are congruent.
Note that in this chapter we assume that $M \subset \mathbb{R}^{3}$ is connected and regular.

5.1: The Shape Operator of $M \subset \mathbb{R}^{3}$

Definition 0.63. Let Z be a vector field on M and $\mathbf{v} \in T_{p} M$. Define the covariant derivative, $\nabla_{v} Z$ as
(i) Let α be a curve in M with $\alpha(0)=\mathbf{p}, \alpha^{\prime}(0)=\mathbf{v} \in T_{p} M$. Then $Z(\alpha(t))$ is a vector field in α and we define

$$
\nabla_{v} Z=\left.\frac{d}{d t} Z(\alpha(t))\right|_{t=0}
$$

(ii) Write $Z=\left(Z_{1}, Z_{2}, Z_{3}\right)$ and define

$$
\nabla_{v} Z=\left(v\left[Z_{1}\right], v\left[Z_{2}\right], v\left[Z_{3}\right]\right)
$$

Definition 0.64. For $\mathbf{p} \in M$ and $\mathbf{v} \in T_{p} M$ we define the shape operator to be $S_{p}(\mathbf{v})=-\nabla_{v} U$.
Lemma 0.17 . The shape operator is symmetric,

$$
S(\mathbf{v}) \cdot \mathbf{w}=S(\mathbf{w}) \cdot \mathbf{v}, \quad \forall k \mathbf{v}, \mathbf{w} \in T_{p} M
$$

5.2: Normal Curvature

Lemma 0.18. If α is a curve on M, then $\alpha^{\prime \prime} \cdot U=S\left(\alpha^{\prime}\right) \cdot \alpha^{\prime}$.
Definition 0.65. Let $u \in T_{p} M$ be a unit tangent vector. The normal curvature of M in the u-direction is $k(u)=S(u) \cdot u$.

Remark 0.66. 1. If $k(\mathbf{u})>0$, then $N(0)=U(\mathbf{p})$ so the surface M is bending toward $U(\mathbf{p})$ in the \mathbf{u} direction.
2. If $k(\mathbf{u})<0$, then $N(0)=-U(\mathbf{p})$, so the surface M is bending away from $U(\mathbf{p})$ in the \mathbf{u} direction.
3. If $k(\mathbf{u})=0$, then the rate of bending is unusually small.

Definition 0.67. The max, k_{1}, and min, k_{2} of the normal curvature are called the principal curvatures of M at p. The corresponding directions are called the principal vectors / direction.

Definition 0.68. A point p is umbilic if $k_{1}=k_{2}$ at p.
Theorem 0.69. (i) If $k_{1}=k_{2}$, then $S=k_{1}$ Id at p.
(ii) If $k_{1}>k_{2}$, then there exist exactly two principal directions. Furthermore, these are eigenvectors of S with $S\left(u_{1}\right)=k_{1} u_{1}$ and $S\left(u_{2}\right)=k_{2} u_{2}$.

Remark 0.70. Locally and after translation and rotation, $M \subset \mathbb{R}^{3}$ may be approximated as $z=f(x, y)$, where $f_{x}(0)$ and $f_{y}(0)$ correspond to principle directions at $f(0,0)$. In terms of the principle curvatures, we may write a quadratic approximation as

$$
z=\frac{1}{2}\left(k_{1} x^{2}+k_{2} y^{2}\right)
$$

Definition 0.71. D is a derivation on an \mathbb{R}-algebra A if it is on operation $D: A \rightarrow A$ such that
(i) $D(a f+b g)=a D(f)+b D(g)$.
(ii) $D(f g)=D(f) g+f D(g), \forall f, g \in A$.

5.3: Gaussian Curvature

Definition 0.72. The Gaussian curvature of $M \subset \mathbb{R}^{3}$ is the real-valued function $K=$ $\operatorname{det} S=M$.

Definition 0.73. The mean curvature of $M \subset \mathbb{R}^{3}$ is $H=\frac{1}{2} \operatorname{tr} S$.
Remark 0.74. With respect to principal vectors e_{1}, e_{2},

$$
S=\left[\begin{array}{cc}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right] \quad K=k_{1} k_{2} \quad H=\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

Remark 0.75. 1. If $K(\mathbf{p})>0$, then M is bending away from its tangent plane in all tangent directions at \mathbf{p} and thus M locally looks like a paraboloid.
2. If $K(\mathbf{p})<0$, then M is locally saddle shaped near \mathbf{p}.

Lemma 0.19. If $\mathbf{v}, \mathbf{w} \in T_{p}(M)$ are linearly independent, then

$$
\begin{aligned}
& S(\mathbf{v}) \times S(\mathbf{w})=K(\mathbf{p}) \mathbf{v} \times \mathbf{w} \\
& S(\mathbf{v}) \times \mathbf{w}+\mathbf{v} \times S(\mathbf{w})=2 H(\mathbf{p}) \mathbf{v} \times \mathbf{w}
\end{aligned}
$$

Lemma 0.20. In an oriented region of $M, k_{1}, k_{2}=H \pm \sqrt{H^{2}-K}$. Thus k_{1} and k_{2} are continuous in this region but need not be differentiable depending on if $H^{2}-K=0$ (if region contains umbilic points).

Remark 0.76. k_{1}, k_{2} smooth away from umbilic points.
Definition 0.77. If $K=0$ we say M is flat.
Definition 0.78. If $H=0$ we say M is minimal.

5.4: Computational Techniques

Definition 0.79. Let $\mathbf{x}: D \rightarrow M$ be a coordinate patch. Then define the real-valued functions,

$$
\begin{aligned}
& E=\mathbf{x}_{u} \cdot \mathbf{x}_{u}, \quad F=\mathbf{x}_{u} \cdot \mathbf{x}_{v}, \quad G=\mathbf{x}_{v} \cdot \mathbf{x}_{v} \\
& l=S\left(\mathbf{x}_{u}\right) \cdot \mathbf{x}_{u}=U \cdot \mathbf{x}_{u u}, \quad m=S\left(\mathbf{x}_{u}\right) \cdot \mathbf{x}_{v}=U \cdot \mathbf{x}_{u v}, \quad n=S\left(\mathbf{x}_{v}\right) \cdot \mathbf{x}_{v}=U \cdot \mathbf{x}_{v v}
\end{aligned}
$$

Definition 0.80. Let $\mathbf{v}=v_{1} \mathbf{x}_{u}+v_{2} \mathbf{x}_{v}$ and $\mathbf{w}=w_{1} \mathbf{x}_{u}+w_{2} \mathbf{x}_{v}$. Define the first fundamental form as

$$
\mathbf{v} \cdot \mathbf{w}=E v_{1} w_{1}+F\left(v_{1} w_{1}+v_{2} w_{2}\right)+G v_{2} w_{2}
$$

Theorem 0.81.

$$
K=\frac{n l-m^{2}}{E G-F^{2}} \quad H=\frac{G l+E n-2 F m}{2\left(E G-F^{2}\right)}
$$

5.5: The Implicit Case

Lemma 0.21. Let V, W be two tangent vector fieldds on M such that $V \times W=Z$. Then

$$
K=\frac{Z \cdot\left(\nabla_{v} Z \times \nabla_{w} Z\right)}{\|Z\|^{4}} \quad H=-\frac{Z \cdot\left(\left(\nabla_{v} Z\right) \times W+V \times\left(\nabla_{W} Z\right)\right)}{2\|Z\|^{3}}
$$

5.6: Special Curves in Surfaces

Definition 0.82. A curve $\alpha(t)$ is a line of curvature or principle curve if $\alpha^{\prime}(t)$ is a principal vector for all t.

Lemma 0.22. Let α be a regular curve in $M \subset \mathbb{R}^{3}$ and U be a unit normal vector field restricted to α. Then

1. α is principle if and only if U^{\prime} and α^{\prime} are collinear at each point.
2. If α is a principle curve, then the principle curvature of M in the direction of α^{\prime} is $\left(\alpha^{\prime \prime} \cdot U\right) /\left(\alpha^{\prime} \cdot \alpha^{\prime}\right)$.

Lemma 0.23. Let α be a curve cut from a surface $M \subset \mathbb{R}^{3}$ by a plane P. If the angle between M and P is constant along α, then α is a principle curve of M.

Theorem 0.83. For a surface of revolution, the principal directions are given by $\mathbf{x}_{u} /\left\|\mathbf{x}_{u}\right\|$ and $\mathbf{x}_{v} /\left\|\mathbf{x}_{v}\right\|$.

Definition 0.84. A curve $\alpha(t)$ is asymptotic if its normal curvature is everywhere zero.
Lemma 0.24. Let $\mathbf{p} \in M \subset \mathbb{R}^{3}$.

1. If $K(\mathbf{p})>0$, then there are no asymptotic directions at \mathbf{p}.
2. If $K(\mathbf{p})<0$, then there are exactly two asymptotic directions at \mathbf{p} and they are bisected by the principle directions at angle θ such that

$$
\tan ^{2} \theta=\frac{-k_{1}(\mathbf{p})}{k_{2}(\mathbf{p})}
$$

3. If $K(\mathbf{p})=0$, then every direction is asymptotic if \mathbf{p} is a planar point. Otherwise there is exactly one asymptotic direction and it is also principle.

Lemma 0.25. A ruled surface M has $K \leqslant 0 . K=0$ if and only if unit normal U is parallel along each ruling of M.

Definition 0.85. A curve $\alpha \subset M \subset \mathbb{R}^{3}$ is a geodesic if $\alpha^{\prime \prime}$ is always normal to M.
Definition 0.86. A closed geodesic is a geodesic segment $\alpha:[a, b] \rightarrow M$ that is smoothly closed, i.e. $\alpha^{\prime}(a)=\alpha^{\prime}(b)$, and thus may be extended by periodicity to the whole real line.

Remark 0.87. On a surface of revolution, all meridians are geodesics.

5.7: Surfaces of Revolution

Definition 0.88. Given a profile curve $\alpha(u)=(f(u), 0, g(u))$ with $\left\|\alpha^{\prime}\right\|^{2}>0$ and $f>0$, we can parametrize a surface of revolution as

$$
X(u, v)=(f(u) \cos v, f(u) \sin v, g(u))
$$

Theorem 0.89. If a surface of revolution is minimal, then M is contained in a plane or catenoid.

Lemma 0.26. For a canonical parametrization (unit-speed) of a surface of revolution,

$$
E=1, \quad F=0, \quad G=f^{2}
$$

and

$$
K=-\frac{f^{\prime \prime}}{f}
$$

Ch6: Geometry of Surfaces in \mathbb{R}^{3}

Key question: How does the shape of a surface affect its other properties?

6.1: The Fundamental Equations

Definition 0.90. A euclidean frame field on $M \subset \mathbb{R}^{3}$ consists of three vector fields E_{1}, E_{2}, E_{3} on M that are orthonormal at each point.

Definition 0.91. If $E_{3}=U$ is normal to M then we call this an adapted frame field.
Lemma 0.27. There exists an adapted frame field on M iff M is orientable and exists a nonvanishing (tangent) vector field V on M.

Definition 0.92. The connection one-forms $\omega_{i j}$ of an adapted frame field are those such that for $\mathbf{v} \in T_{p} M$,

$$
\nabla_{v} E_{i}=\sum_{i=1}^{3} \omega_{i j}(\mathbf{v}) E_{j}(p)
$$

So $\omega_{i j}(v)=\left(\nabla_{v} E_{i}\right) \cdot E_{j}(p)$.
Write

$$
\left[\begin{array}{l}
E_{1} \\
E_{2} \\
E_{3}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=A
$$

Theorem 0.93. $w=(d A) A^{t}$ which implies

$$
\omega_{i j}=\sum_{k=1}^{3}\left(d a_{i k}\right)\left(a^{t}\right)_{k j}=\sum_{k=1}^{3} d a_{i k} a_{j k}
$$

Definition 0.94. The dual one-forms of E_{1}, E_{2}, E_{3} are one-forms $\theta_{1}, \theta_{2}, \theta_{3}$ such that $\theta_{i}(v)=$ $v \cdot E_{i}(p)$ for $v \in T_{p} M$. In other words,

$$
v=\sum_{i=1}^{3} \theta_{i}(v) E_{i}
$$

Lemma 0.28. If ϕ is a one-form then $\phi=\sum_{i} \phi\left(E_{i}\right) \theta_{i}$.
Theorem 0.95.

$$
\left[\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right]=A\left[\begin{array}{l}
d x_{1} \\
d x_{2} \\
d x_{3}
\end{array}\right] \Longrightarrow \theta_{i}=\sum_{j} a_{i j} d x_{j}
$$

Theorem 0.96. Cartan Structural Equations:

(i) The first structural equations are

$$
d \theta_{i}=\sum_{j} \omega_{i j} \wedge \theta_{j}
$$

(ii) The second structural equations are

$$
d \omega_{i j}=\sum_{k} \omega_{i k} \wedge \omega_{k j}
$$

Proposition 0.97. If $\left\{E_{1}, E_{2}, E_{3}\right\}$ is an adapted frame field for $M \subset \mathbb{R}^{3}$, then

$$
S(v)=\omega_{13}(v) E_{1}(p)+\omega_{23}(v) E_{2}(p)
$$

Theorem 0.98. On a surface with an adapted frame field, the structural equations become
(i) First structural equations

$$
d \theta_{1}=\omega_{12} \wedge \theta_{2} \quad d \theta_{2}=\omega_{21} \wedge \theta_{1}=-\omega_{12} \wedge \theta_{1} \quad 0=d \theta_{3}=\omega_{31} \wedge \theta_{1}+\omega_{32} \wedge \theta_{2}
$$

(ii) Second structural equations

Gauss Equation: $d \omega_{12}=\omega_{13} \wedge \omega_{32}$
Codazzi Equations: $d \omega_{13}=\omega_{12} \wedge \omega_{23} \quad d \omega_{23}=\omega_{21} \wedge \omega_{13}$

6.2: Form Computations

Lemma 0.29. If ϕ is a one-form then $\phi=\phi\left(E_{1}\right) \theta_{1}+\phi\left(E_{2}\right) \theta_{2}$.
Lemma 0.30. If μ is a two-form then $\mu=\mu\left(E_{1}, E_{2}\right) \theta_{1} \wedge \theta_{2}$.
Lemma 0.31. (i) $\omega_{13} \wedge \omega_{23}=K \theta_{1} \wedge \theta_{2}$.
(ii) $\omega_{13} \wedge \theta_{2}+\theta_{1} \wedge \omega_{23}=2 H \theta_{1} \wedge \theta_{2}$.

Corollary 0.99.

$$
d \omega_{12}=-K \theta_{1} \wedge \theta_{2}
$$

Definition 0.100. A principal frame field on $M \subset \mathbb{R}^{3}$ is an adapted frame field such that E_{1} and E_{2} are principal vectors at all points.

Lemma 0.32. If \mathbf{p} is not umbilic, then there exists a principal frame field on a neighborhood of $\mathbf{p} \in M$.

Theorem 0.101. For principal frame fields,

$$
\begin{aligned}
& E_{2}\left[k_{1}\right]=\left(k_{1}-k_{2}\right) \omega_{12}\left(E_{1}\right) \\
& E_{1}\left[k_{2}\right]=\left(k_{1}-k_{2}\right) \omega_{12}\left(E_{2}\right)
\end{aligned}
$$

6.3: Some Global Theorems

Theorem 0.102. If M is a connected surface with shape operator $S=0$ then $M \subseteq$ plane.
Lemma 0.33. If every point of M is umbilic then $K \geqslant 0$.
Theorem 0.103. If every point of M is umbilic and $K>0$ then $M \subseteq$ sphere of radius $1 / \sqrt{K}$.
Corollary 0.104. If $M \subset \mathbb{R}^{3}$ compact and all-umbilic then it is an entire sphere.
Theorem 0.105. On every compact surface $M \subset \mathbb{R}^{3}$, there exists a point p with $K(p)>0$.
Remark 0.106. There does not exist a compact surface with $K \leqslant 0$.
Theorem 0.107. (Hilbert) Suppose there exists a point $m \in M \subset \mathbb{R}^{3}$ such that
(i) k_{1} has a local max at m
(ii) k_{2} has a local min at m
(iii) $k_{1}>k_{2}$ at m (so m is not umbilic)

Then $K(m) \leqslant 0$.
Theorem 0.108. (Liebman) If $M \subset \mathbb{R}^{3}$ is compact with K constant (and necessarily $K>0$) then M is a sphere of radius $1 / \sqrt{K}$.

6.4: Isometries and Local Isometries

Definition 0.109. Let $\mathbf{p}, \mathbf{q} \in M \subset \mathbf{R}^{3}$ and $\mathcal{C}=\{\alpha: \alpha$ is a curve segment from \mathbf{p} to $\mathbf{q}\}$. Then the intrinsic distance $\rho(\mathbf{p}, \mathbf{q})$ is define as

$$
\rho(\mathbf{p}, \mathbf{q})=\inf _{\alpha \in \mathcal{C}} L(\alpha)
$$

where L is the length operator.
Definition 0.110. An isometry $F: M \rightarrow \bar{M}$ of surfaces in \mathbf{R}^{3} is a one-to-one mapping of M onto \bar{M} that preserves dot products of tangent vectors. If F_{*} is the derivative map of F, then

$$
F_{*}(\mathbf{v}) \cdot F_{*}(\mathbf{w})=\mathbf{v} \cdot \mathbf{w}, \quad \forall \mathbf{v}, \mathbf{w} \in T_{p} M, p \in M
$$

Remark 0.111. By remarks in previous chapters, an isometry F is a diffeomorphism.
Theorem 0.112. Isometries preserve intrinsic distance. If $F: M \rightarrow \bar{M}$ is an isometry of surfaces in \mathbf{R}^{3},

$$
\rho(\mathbf{p}, \mathbf{q})=\bar{\rho}(F(\mathbf{p}), F(\mathbf{q}))
$$

for $\mathbf{p}, \mathbf{q} \in M$.
Remark 0.113. If there is an isometry between two surfaces, they are said to be isometric.
Definition 0.114. A local isometry $F: M \rightarrow N$ of surfaces is a mapping that preserves dot products of tangent vectors.

Thus an isometry is a local isometry that is one-to-one and onto. One may show that a local isometry is an isometry on a neighborhood of points.

Theorem 0.115. Let $F: M \rightarrow N$ be a mapping and $X: D \rightarrow M$ be a patch. Let $\bar{X}=F(X)$: $D \rightarrow N$. Then F is a local isometry if and only if

$$
E=\bar{E}, \quad F=\bar{F}, \quad G=\bar{G}
$$

Remark 0.116. One may use this result to construct local isometries. I.e. if you have two patches, $\mathbf{x}: D \rightarrow M$ and $\mathbf{y}: D \rightarrow N$, find a function F such that $F(\mathbf{x}(u, v))=\mathbf{y}(u, v)$ for $(u, v) \in D$ and with $E=\bar{E}, F=\bar{F}, G=\bar{G}$.

Definition 0.117. A mapping $F: M \rightarrow N$ is conformal if there exists a real-valued function $\lambda>0$ on M such that

$$
\left\|F_{*}\left(\mathbf{v}_{p}\right)\right\|=\lambda(\mathbf{p})\left\|\mathbf{v}_{p}\right\|
$$

Here λ is called the scale factor.
Note that a local isometry has $\lambda=1$, so a conformal mapping can be thought of as a generalized isometry.

6.5: Intrinsic Geometry of Surfaces in \mathbf{R}^{3}

Intrinsic geometry of a surface refers to its properties which are invariant under isometry.
Lemma 0.34. Let $F: M \rightarrow \bar{M}$ be an isometry and let E_{1}, E_{2} be a tangent frame field on M. If \bar{E}_{1}, \bar{E}_{2} is the transferred frame field on \bar{M} then

$$
\begin{aligned}
& \theta_{1}=F^{*}\left(\bar{\theta}_{1}\right), \quad \theta_{2}=F^{*}\left(\bar{\theta}_{2}\right) \\
& \omega_{12}=F^{*}\left(\bar{\omega}_{12}\right)
\end{aligned}
$$

Theorem 0.118. (Theorema egregium of Gauss) Gaussian curvature is an isometric invariant. Explicitly, if $F: M \rightarrow \bar{M}$ is an isometry, then

$$
K(\mathbf{p})=\bar{K}(F(\mathbf{p})), \forall \mathbf{p} \in M
$$

6.6: Orthogonal Coordinates

Definition 0.119. The associated frame field E_{1}, E_{2} of an orthogonal patch $(F=0) \mathbf{x}: D \rightarrow M$ consists of

$$
E_{1}=\frac{\mathbf{x}_{u}(u, v)}{\sqrt{E(u, v)}} \quad E_{2}=\frac{\mathbf{x}_{v}(u, v)}{\sqrt{G(u, v)}}
$$

Remark 0.120. This yields dual one forms

$$
\theta_{1}=\sqrt{E} d u \quad \theta_{2}=\sqrt{G} d v
$$

Proposition 0.121. For an orthogonal patch,

$$
K=-\frac{1}{\sqrt{E G}}\left[\left(\frac{(\sqrt{G})_{u}}{\sqrt{E}}\right)_{u}+\left(\frac{(\sqrt{E})_{v}}{\sqrt{G}}\right)_{v}\right]
$$

6.7: Integration and Orientation

One can show that a coordinate patch $\mathbf{x}: D \rightarrow M$ distorts the area of a rectangle such that the infinitesimal area is given by $\sqrt{E G-F^{2}} \Delta u \Delta v$. Thus the area will be found by integrating this over certain subsets of D.

Definition 0.122. For a rectangle $R: a \leqslant u \leqslant b, c \leqslant v \leqslant d$ with interior $R^{\circ}: a<u<b, c<$ $v<d$, a 2-segment $\mathbf{x}: R \rightarrow M$ is patchlike is $\mathbf{x}: R^{\circ} \rightarrow M$ is a patch in M.

Definition 0.123. A paving of a region \mathcal{P} in a surface M is a finite number of patchlike 2-segments $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ whose images fill M in such a way that each point of M is in at most one set $\mathbf{x}_{i}\left(R_{i}^{\circ}\right)$.

Note that an entire compact surface is always pavable and the area of a pavable region is said to be the sum of the areas of its patchlike 2 -segments.

Definition 0.124. An area form on a surface M is a differentiable 2-form μ whose value on any pair of tangent vectors is

$$
\mu(\mathbf{v}, \mathbf{w})= \pm\|\mathbf{v} \times \mathbf{w}\|
$$

Lemma 0.35. A surface M has an area form if and only if it is orientable. On a connected orientable surface there are exactly two area forms, which are negatives of each other.

Definition 0.125. Let v be a 2-form on a pavable oriented region \mathcal{P} in a surface. The integral of \boldsymbol{v} over \mathcal{P} is

$$
\iint_{\mathcal{P}} v=\sum_{i} \iint_{X_{i}} v
$$

where X_{1}, \ldots, X_{k} is a positively oriented paving of \mathcal{P}.

6.8: Total Curvature

Definition 0.126. Let K be Gaussian curvature of a compact surface M oriented by area form $d M$. Then

$$
\iint_{M} K d M
$$

is the total Gaussian curvature of M.
Definition 0.127. Let M and N be surfaces oriented by area forms $d M$ and $d N$. Then the Jacobian of a mapping $F: M \rightarrow N$ is the real-valued function J_{F} on M such that

$$
F^{*}(d N)=J_{F} d M
$$

Theorem 0.128. The Gaussian curvature K of an oriented surface $M \subset \mathbb{R}^{3}$ is the Jacobian of its Gauss map.

Corollary 0.129. The total Gaussian curvature of an oriented surface $M \subset \mathbb{R}^{3}$ equals the algebraic area of the image of its Gauss map $G: M \rightarrow \Sigma$.

Corollary 0.130. Let \mathcal{R} be an oriented region in $M \subset \mathbb{R}^{3}$ on which

1. The Gauss map G is one-to-one and
2. Either $K \geqslant 0$ or $K \leqslant 0$

Then the total curvature of \mathcal{R} is \pm area of $G(\mathcal{R})$ where the sign is that of K.
Definition 0.131. The rotation operator of M is the linear operator J such that

$$
J(\mathbf{v})=U \times \mathbf{v}
$$

Definition 0.132. Let \mathbf{v}, \mathbf{w} be unit tangent vectors at a point of an oriented surface M. A number ϕ is an oriented angle from \mathbf{v} to \mathbf{w} if

$$
\mathbf{w}=\cos \phi \mathbf{v}+\sin \phi J(\mathbf{v})
$$

Lemma 0.36. Let $\alpha: I \rightarrow M$ be a curve in an oriented surface M. If V and W are nonvanishing tangent vector fields on α, there is a differentiable function ϕ on I such that for each $t \in I, \phi(t)$ is an oriented angle from $V(t)$ to $W(t)$.

Then any non-vanishing vector field V on M determines a positively oriented frame field,

$$
E_{1}=\frac{V}{\|V\|} \quad E_{2}=J\left(E_{1}\right)=\frac{J(V)}{\|V\|}
$$

6.9: Congruence of Surfaces

Two surfaces M and \bar{M} in \mathbb{R}^{3} are congruent if there is an isometry F of \mathbb{R}^{3} that carries M exactly onto \bar{M}.

Theorem 0.133. If \mathbf{F} is a Euclidean isometry such that $\mathbf{F}(M)=\bar{M}$, then $F=\mathbf{F} \mid M: M \rightarrow$ \bar{M} is an isometry. Furthermore, if M and \bar{M} are suitably oriented, then F preserves shape operators,

$$
F_{*}(S(\mathbf{v}))=\bar{S}\left(F_{*}(\mathbf{v})\right)
$$

Theorem 0.134. Let M and \bar{M} be oriented surfaces in \mathbb{R}^{3}. Let $F: M \rightarrow \bar{M}$ be an isometry that preserves shape operators. Then M an $\overline{d M}$ are congruent. In fact, there is a Euclidean isometry \mathbf{F} such that $\mathbf{F} \mid M=F$.

Ch7: Reimannian Geometry

7.1: Geometric Surfaces

Definition 0.135. A geometric surface is an abstract surface M with an inner product on each tangent plane which varies smoothly.

Definition 0.136. A metric tensor g on M is a function on all ordered pairs of tangent vectors v, w at points $p \in M$ such that

$$
g_{p}(v, w)=\langle v, w\rangle_{p}
$$

Remark 0.137. The metric tensor is like a two-form but symmetric.
Note 0.138. Construction methods for geometric surfaces:

1. Conformal Change: Let $h>0$ be differentiable on a region of \mathbb{R}^{2}, then redefine the inner product by

$$
\langle\mathbf{v}, \mathbf{w}\rangle=\frac{v \cdot w}{h(\mathbf{p})^{2}}
$$

2. Pullback: Use inner product on another geometric surface via pullback, $F: M \rightarrow N$,

$$
\langle\mathbf{v}, \mathbf{w}\rangle_{M}=\left\langle F_{*}(v), F_{*}(w)\right\rangle_{N}
$$

3. Coordinate Description: For a coordinate patch x on an abstract surface M, defining the functions,

$$
E=\left\langle\mathbf{x}_{u}, \mathbf{x}_{u}\right\rangle \quad F=\left\langle\mathbf{x}_{u}, \mathbf{x}_{v}\right\rangle \quad G=\left\langle\mathbf{x}_{v}, \mathbf{x}_{v}\right\rangle
$$

defines a unique metric tensor on the image of \mathbf{x}.
Note 0.139. As before, dual 1-forms, θ_{1}, θ_{2} are uniquely determined by $\theta_{i}\left(E_{j}\right)=\delta_{i j}$, and connection form ω_{12} is uniquely determined by the first structural equations,

$$
d \theta_{1}=\omega_{12} \wedge \theta_{2} \quad d \theta_{2}=\omega_{21} \wedge \theta_{1}
$$

Definition 0.140. Let $\left\{E_{1}, E_{2}\right\}$ and $\left\{\bar{E}_{1}, \bar{E}_{2}\right\}$ be two choices of frame fields and let φ be the angle between \bar{E}_{1} and E_{1}. If $\bar{E}_{2}=-\sin \varphi E_{1}+\cos \varphi E_{2}$, then the two frame fields are said to have the same orientation. If $\bar{E}_{2}=\sin \varphi E_{1}-\cos \varphi E_{2}$ they are said to have opposite orientation.

Lemma 0.37. Let $\left\{E_{1}, E_{2}\right\}$, $\left\{\bar{E}_{1}, \bar{E}_{2}\right\}$ be frame fields on the same region of M.
(i) If they have the same orientation,

$$
\bar{\omega}_{12}=\omega_{12}+d \varphi \quad \bar{\theta}_{1} \wedge \bar{\theta}_{2}=\theta_{1} \wedge \theta_{2}
$$

(ii) If they have opposite orientation,

$$
\bar{\omega}_{12}=-\left(\omega_{12}+d \varphi\right) \quad \bar{\theta}_{1} \wedge \bar{\theta}_{2}=-\theta_{1} \wedge \theta_{2}
$$

Definition 0.141. A Reimannian manifold is a manifold furnished with a metric.

7.2: Gaussian Curvature

Need a new definition of Gaussian curvature now that we no longer have a shape operator.
Theorem 0.142. On a geometric surface M, there is a unique real-valued function K such that for every frame field on M, the second structural equation holds,

$$
d \omega_{12}=-K \theta_{1} \wedge \theta_{2}
$$

Definition 0.143. On a geometric surface, define the Gaussian curvature to be K such that $d \omega_{12}=-K \theta_{1} \wedge \theta_{2}$.

Corollary 0.144. For the plane \mathbb{R}^{2} with metric tensor $\langle\mathbf{v}, \mathbf{w}\rangle=\frac{v \cdot w}{h^{2}(\mathbf{p})}$, the Gaussian curvature is

$$
K=h\left(h_{u u}+h_{v v}\right)-\left(h_{u}^{2}+h_{v}^{2}\right)
$$

Proposition 0.145. Let $F: M \rightarrow N$ be a regular mapping of a geometric surface M onto a surface N without geometry. Suppose that whenever $F\left(\mathbf{p}_{1}\right)=F\left(\mathbf{p}_{2}\right)$, there is an isometry G_{12} from a neighborhood of \mathbf{p}_{1} to a neighborhood of \mathbf{p}_{2} such that

$$
F G_{12}=F, \quad G_{12}\left(\mathbf{p}_{1}\right)=\mathbf{p}_{2}
$$

Then there is a unique metric tensor on N that makes F a local isometry.

7.3: Covariant Derivative

Lemma 0.38. Assume there exists a covariant derivative ∇ on M which is linear, Leibnizian and such that $\omega_{12}(V)=\left\langle\nabla_{V} E_{1}, E_{2}\right\rangle$, then ∇ obeys the connection equations,

$$
\nabla_{V} E_{1}=\omega_{12}(V) E_{2} \quad \nabla_{V} E_{2}=\omega_{12}(V) E_{1}
$$

Furthermore, for a vector field $W=f_{1} E_{1}+f_{2} E_{2}$,

$$
\nabla_{V} W=\left(V\left[f_{1}\right]+f_{2} \omega_{21}(V)\right) E_{1}+\left(V\left[f_{2}\right]+f_{1} \omega_{12}(V)\right) E_{2}
$$

called the covariant derivative formula.
Theorem 0.146. On each geometric surface M there exists a unique covariant derivative ∇ in the linear and Leibnizian properties satisfying $\omega_{12}(V)=\left\langle\nabla_{V} E_{1}, E_{2}\right\rangle$.

Definition 0.147. A vector field V on a curve α in a geometric surface is parallel provided its covariant derivative vanishes, $V^{\prime}=0$.

Note 0.148. For $Y=f_{1} E_{1}+f_{2} E_{2}$ along curve α, we write

$$
Y^{\prime}=\left(f_{1}^{\prime}+f_{2} \omega_{21}\left(\alpha^{\prime}\right)\right) E_{1}+\left(f_{2}^{\prime}+f_{1} \omega_{12}\left(\alpha^{\prime}\right)\right) E_{2}
$$

Lemma 0.39. Let α be a curve in a geometric surface M, and let \mathbf{v} be a tangent vector at $\mathbf{p}=\alpha\left(t_{0}\right)$. Then there is a unique parallel vector field V on α such that $V\left(t_{0}\right)=\mathbf{v}$.

Remark 0.149. For a parallel vector field V on α, we say $\alpha(t)$ is gotten from v at $\mathbf{p}=\alpha\left(t_{0}\right)$ by parallel transportation along α.

Definition 0.150. If $\alpha:[a, b] \rightarrow M$ is a closed curve in the domain of a frame field, $\varphi^{\prime}+$ $\omega_{12}\left(\alpha^{\prime}\right)=0$ leads us to define the holonomy angle ψ_{α} of α as

$$
\psi_{\alpha}=\varphi(b)-\varphi(a)=-\int_{\alpha} \omega_{12}
$$

Lemma 0.40. (Connection between covariant derivatives on a geometric surface and \mathbb{R}^{3}) If V and W are tangent vector fields on a surface M in \mathbb{R}^{3}, then

1. $\nabla_{V} W$ is the component of $\tilde{\nabla}_{V} W$ tangent to M.
2. If S is the shape operator of M derived from a unit normal U, then

$$
\tilde{\nabla}_{V} W=\nabla_{V} W+(S(V) \cdot W) U
$$

7.4: Geodesics

Definition 0.151. A curve in a geometric surface is a geodesic provided its acceleration is zero, $\gamma^{\prime \prime}=0$.

Remark 0.152. The velocity of a geodesic is parallel, i.e. they never turn.
Remark 0.153. As acceleration is preserved by isometry, geodesics are isometric invariants.
Theorem 0.154. Write $\alpha^{\prime \prime}=A_{1} E_{1}+A_{2} E_{2}$ where A_{1}, A_{2} are real-valued functions. Let \mathbf{x} be an orthogonal patch in a geometric surface M. A curve $\alpha(t)=x\left(a_{1}(t), a_{2}(t)\right)$ is a geodesic of M iff

$$
\begin{aligned}
& A_{1}=a_{1}^{\prime \prime}+\frac{1}{2 E}\left(E_{u} a_{1}^{\prime 2}+2 E_{v} a_{1}^{\prime} a_{2}^{\prime}-G_{u} a_{2}^{\prime 2}\right)=0 \\
& A_{2}=a_{2}^{\prime \prime}+\frac{1}{2 G}\left(-E_{v} a_{1}^{\prime 2}+2 G_{u} a_{1}^{\prime} a_{2}^{\prime}+G_{v} a_{2}^{\prime 2}\right)=0
\end{aligned}
$$

Theorem 0.155. Given a tangent vector \mathbf{v} to M at a point \mathbf{p}, there is a unique geodesic γ defined on an interval I around 0 such that $\gamma(0)=\mathbf{p}$ and $\gamma^{\prime}(0)=\mathbf{v}$.

Definition 0.156. A geometric surface is complete provided every maximal geodesic in M is defined on the whole real line \mathbb{R}.

Lemma 0.41. Let E_{1}, E_{2} be a frame field and let α be a constant speed curve such that α^{\prime} and E_{2} are never orthogonal. If $A_{1}=0$ then $A_{2}=0$, hence α is a geodesic.

Definition 0.157. Let α be a unit-speed curve in $M \subset \mathbb{R}^{3}$, U be a unit normal vector field restricted to α, and $V=U \times \alpha^{\prime \prime}$. Then the geodesic curvature κ_{g} of α is the function such that

$$
\alpha^{\prime \prime}=\kappa_{g} V+k U
$$

where $k=S(T) \cdot T$ is the normal curvature of M in the T direction.
Corollary 0.158. Let β be a unit speed curve in a region oriented by a frame field E_{1}, E_{2}. If φ is an angle function from E_{1} to β^{\prime} along β, then

$$
\kappa_{g}=\frac{d \varphi}{d s}+\omega_{12}\left(\beta^{\prime}\right)
$$

Lemma 0.42. A regular speed curve α in M is a geodesic if and only if α has constant speed and geodesic curvature, $\kappa_{g}=0$.

7.5: Clairaut Parametrizations

Definition 0.159. A Clairaut parametrization $\mathbf{x}: D \rightarrow M$ is an orthogonal parametrization for which E and G depend only on u. I.e. $F=0, E_{v}=G_{v}=0$.

Lemma 0.43. If x is a Clairaut parametrization, then

1. All the u-parameter curves are pregeodesics.
2. A v-parameter curve $u=u_{0}$ is a geodesic iff $G_{u}\left(u_{0}\right)=0$.

Theorem 0.160. Let $\alpha=\mathbf{x}\left(a_{1}, a_{2}\right)$ be a unit-speed geodesic with \mathbf{x} a Clairaut parametrization. If φ is the angle from x_{u} to α^{\prime} then the function

$$
c=G\left(a_{1}\right) a_{2}^{\prime}=\sqrt{G\left(a_{1}\right)} \sin \varphi
$$

is constant along α. Hence α cannot leave the region where $G \geqslant c^{2}$.
Definition 0.161. $c=c(\alpha)$ from above is called the slant of α as it determines the angle φ at which α cuts across the meridians.

Proposition 0.162. If \mathbf{x} is a Clairaut parametrization, then every geodesic α such that α^{\prime} is never orthogonal to meridians can be parametrized as $\beta(u)=\mathbf{x}(u, v(u))$ where

$$
\frac{d v}{d u}= \pm \frac{c \sqrt{E}}{\sqrt{G} \sqrt{G-c^{2}}}
$$

with c the slant of α. Hence by the fundamental theorem of calculus,

$$
v(u)=v\left(u_{0}\right) \pm \int_{u_{0}}^{u} \frac{c \sqrt{E} d t}{\sqrt{G} \sqrt{G-c^{2}}}
$$

7.6: Gauss-Bonnet Theorem

Definition 0.163. Let $\alpha:[a, b] \rightarrow M$ be a regular curve segment in an oriented geometric surface M. The total geodesic curvature of α is

$$
\int_{\alpha} \kappa_{g} d s=\int_{s(a)}^{s(b)} \kappa_{g}(s(t)) \frac{d s}{d t} d t
$$

Lemma 0.44. Let $\alpha:[a, b] \rightarrow M$ be a regular curve segment in a region of M oriented by a frame field E_{1}, E_{2}. Then

$$
\int_{\alpha} \kappa_{g} d s=\varphi(b)-\varphi(a)+\int_{\alpha} \omega_{12}
$$

where φ is an angle function from E_{1} to α^{\prime} along α and ω_{12} is the connection form of E_{1}, E_{2}.
Definition 0.164. Let $\mathbf{x}: R \rightarrow M$ be a one-to-one regular 2-segment with vertices $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}$. The exterior angle ε_{j} of \mathbf{x} at $\mathbf{p}_{j}(1 \leqslant j \leqslant 4)$ is the turning angle at \mathbf{p}_{j} derived from the edge curves $\alpha, \beta,-\gamma,-\delta, \alpha, \ldots$ in order of occurrence in \mathbf{x}. The interior angle l_{j} at \mathbf{p}_{j} is $\pi-\varepsilon_{j}$.

Theorem 0.165. Let $\mathbf{x}: R \rightarrow M$ be a one-to-one regular 2-segment in a geometric surface M. If $d M$ is the area form determined by \mathbf{x}, then

$$
\iint_{\mathbf{x}} K d M+\int_{\partial \mathbf{x}} \kappa_{g} d s+\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}=2 \pi
$$

where ε_{j} is the exterior angle at the vertex \mathbf{p}_{j} of $\mathbf{x}(1 \leqslant j \leqslant 4)$. This formula can be written in terms of interior angles as

$$
\iint_{\mathbf{x}} K d M+\int_{\partial \mathbf{x}} \kappa_{g} d s=l_{1}+l_{2}+l_{3}+l_{4}-2 \pi
$$

Definition 0.166. A rectangular decomposition \mathcal{D} of a surface M is a finite collection of one-to-one regular 2-segments $\mathbf{x}_{1}, \ldots, \mathbf{x}_{f}$ whose images cover M in such a way that if any two intersect, they do so in either a single common vertex or a single common edge.

Theorem 0.167. Every compact surface M has a rectangular decomposition.
Theorem 0.168. If \mathcal{D} is a rectangular decomposition of a compact surface M, let v, e, and f be the number of vertices, edges and faces in \mathcal{D}. Then the integer $v-e+f$ is the same for every rectangular decomposition of M. This integer $\chi(M)$ is called the Euler characteristic of M.

Definition 0.169. $\Sigma[h]$ is the surface obtained by taking a sphere and adding h handles to it.
Theorem 0.170. If M is a compact, connected, orientable surface, there is a unique integer $h \geqslant 0$ such that M is diffeomorphic to $\Sigma[h]$.

Corollary 0.171. Compact orientable surfaces M and N have the same Euler characteristic iff they are diffeomorphic.

Theorem 0.172. (Gauss-Bonnet) The total Gaussian curvature of a compact orientable geometric surface M is 2π times its Euler characteristic:

$$
\iint_{M} K d M=2 \pi \chi(M)
$$

Note 0.173. This links the topology and geometry of a surface, implying that the total Gaussian curvature is a topological invariant.

7.7: Applications of Gauss-Bonnet

Definition 0.174. An oriented polygonal region \mathcal{P} in a surface M is a (necessarily compact) oriented region furnished with a positively oriented rectangular decomposition $\mathbf{x}_{1}, \ldots, \mathbf{x}_{f}$.
Definition 0.175. A boundary segment of \mathcal{P} is a curve segment β that is an edge curve of exactly one of the rectangles $\mathbf{x}_{i}\left(R_{i}\right)$. For simplicity we add the requirement that a vertex of the decomposition cannot belong to more than the boundary segments.
Definition 0.176. The oriented boundary $\partial \mathcal{P}$ of an oriented polygonal region \mathcal{P} is the formal sum of the simple closed, oriented polygonal curves β_{i} described above:

$$
\partial \mathcal{P}=\beta_{1}+\cdots+\beta_{k}
$$

Theorem 0.177. (Generalized Stokes' Theorem) If ϕ is a 1 -form on an oriented polygonal region \mathcal{P}, then

$$
\iint_{\mathcal{P}} d \phi=\int_{\partial \mathcal{P}} \phi
$$

In particular, if \mathcal{P} is an entire compact oriented surface M, then $\iint_{M} d \phi=0$.
Corollary 0.178. The following properties of a compact orientable surfaces surface are equivalent:

1. There is a non-vanishing tangent vector field on M.
2. $\chi(M)=0$
3. M is diffeomorphic to a torus.

Theorem 0.179. If \mathcal{P} is an oriented polygonal region in a geometric surface, then

$$
\iint_{\mathcal{P}} K d M+\int_{\partial \mathcal{P}} \kappa_{g} d s+\sum \varepsilon_{j}=2 \pi \chi(\mathcal{P})
$$

where $\sum \varepsilon_{j}$ is the sum of the exterior angles of all the closed boundary curves comprising $\partial \mathcal{P}$.
Corollary 0.180. If Δ is a triangle in an oriented geometric surface M, then

$$
\iint_{\Delta} K d M+\int_{\partial \Delta} \kappa_{g} d s=2 \pi-\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}\right)=\left(l_{1}+l_{2}+l_{3}\right)-\pi
$$

Definition 0.181. A point \mathbf{p} is an isolated singular point of a vector field V is V is nonvanishing and differentiable on some neighborhood \mathcal{N} of \mathbf{p}, except at the point \mathbf{p} itself.

Definition 0.182. Let $\alpha:[a, b] \rightarrow C$ be a parametrization of the boundary C as the oriented boundary $\partial \mathcal{D}$ of \mathcal{D}. Let $\varphi=\left\langle_{\alpha}(X, V)\right.$ be an angle function from X_{α} to V_{α} (these vector fields restricted to α) for some smooth vector field X with no singularities anywhere in \mathcal{D}. Then $\varphi(b)-\varphi(a)$ is called the total rotation and is a multiple of 2π.
Definition 0.183. The index of V at p is the integer

$$
\operatorname{ind}(V, p)=\frac{\varphi(b)-\varphi(a)}{2 \pi}
$$

Theorem 0.184. (Poincare-Hopf) Let V be a vector field on a compact oriented surface M. If V is differentiable and non-vanishing except at isolated singular points p_{1}, \ldots, p_{k} then the Euler characteristic of M is the sum of their indices

$$
\chi(M)=\sum_{i=1}^{K} \operatorname{ind}\left(V, p_{i}\right)
$$

