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Chl: Calculus on Euclidean Space

1.3: Directional Derivatives

Definition 0.1. Let f : R — R be differentiable and v, be a tangent vector to R3, then the
directional derivative of f with respect to v, is defined as

d
vplf] = a(f(lﬂ—tv)) o

Lemma 0.1. If v, = (v1,ve,v3) € T,R3, then

Theorem 0.2. Let f and g be functions on R3, vp and wy be tangent vectors, and a and b
numbers. Then

1. (avp + bwy)[f] = avp[f] + bwp[f].
2. vplaf +bg] = avp[f] + bvplg].

8. vplfgl = vplfl - g(p) + f(P) - vplgl-

1.4: Curves in R?

Definition 0.3. A curve in R? is a differentiable function o : I — R3 from an open interval
I into R3.

Definition 0.4. Let o : I — R3 be a curve. If h : J — I is a differentiable function on an open
interval J, then the composite function

B=a(h):J—R?
18 a curve called a reparametrization of o by h.

Lemma 0.2. If 5 is a reparametrization of o by h, then

705 = (5 ) (' this)

Lemma 0.3. Let o be a curve in R? and let f be a differentiable function on R3, then

d(f(e))

o' (1) = 2L

(t)



1.5: 1-forms

Definition 0.5. A 1-form ¢ : T,R3 is a function on the set of all tangent vectors to R3 such
that ¢ is linear at each point. ILe.

d(av +bw) = ap(v) + bp(w)

Definition 0.6. If f : R? — R is differentiable then the differential df of f is the 1-form such
that

df (vp) = vpf], Vv, € T,R?

Lemma 0.4. If f is a differentiable function on R3, then

df = Z g;:dxi

Lemma 0.5. Let f : R?> = R and h : R — R be differentiable functions. Then the composite
function h(f) : R® — R is also differentiable. Then

d(h(f)) = I (f)df

1.6: Differential Forms
Multiplication for differential forms is antisymmetric. So
dridr; = —dx;dz;
which implies that dx;dz; = 0. Now note that
e A 0O-form is a differentiable function f.
e A 1-form is an expression fdxr + gdy + hdz.
e A 2-form is an expression fdxdy + gdxdz + hdydz.
e A 3-form is an expression fdzdydz.
Lemma 0.6. If ¢ and ¢ are 1-forms, then
PANY=—YpN¢

Definition 0.7. If ¢ = Y_ fidx; is a 1-form on R3, the exterior derivative of ¢ is the 2-form

Theorem 0.8. Let f and g be functions, ¢ and 1 be 1-forms. Then
1. d(fg) = dfg + fdg.
2. d(f¢) = df A+ fdo.
3. d(pAp) =dd A — ¢ Adip.

Ch2: Frame Fields

2.2: Curves

Theorem 0.9. If  is a reqular curve in R3, then there exists a reparametrization 3 of o such
that B is unit-speed.



2.3: The Frenet Formulas

Theorem 0.10. (Frenet formulas): If 3 : I — R? is a unit-speed curve with curvature > 0,

then
T 0 k 0 T
N | =| - 0 7 N
B’ 0 —7 0 B

Corollary 0.11. Let 3 be a unit-speed curve in R3 with k > 0. Then 3 is a plane curve if and
only if T =0.

Lemma 0.7. If B is a unit-speed curve with constant curvature k > 0 and T = 0, then 8 is part
of a circle with radius 1/k.
2.4: Arbitrary Speed Curves

Theorem 0.12. (Frenet formulas): If a : I — R3 is a regular curve with curvature k > 0,

then
T 0 kv 0 T
N | =] —kv 0 7o N
B’ 0 —-7mv 0 B

Theorem 0.13. Let o be a reqular curve in R®. Then

/ / X 1
- % N=BxT B=_—-"°_
[e/]] [’ x "]
and
||O/ X O/,H (a/ X O//) . O/H
rR= ———————— e A—
le/|| lo/ x a”||?

Definition 0.14. A regular curve o in R3 is a eylindrical helixz if T has constant angle 6
with some fized unit vector u. Le. T(t)-u = cosf, Vt.

Theorem 0.15. A reqular curve o with k > 0 is a cylindrical helix if and only if the ratio T/k
18 constant.
2.5: Covariant Derivatives

Definition 0.16. Let W be a vector field on R? and v be a tangent vector field to R at point
p. Then the covariant derivative of W with respect to v is

V.W =W (p + tv)'(0)
Lemma 0.8. If W = (w1, ws,w3) is a vector field on R? and v is a tangent vector at | then
VW = (v[wi], v[ws], v[ws])

Theorem 0.17. Let v and w be tangent vectors to R3 at 1 and let Y and Z be vector fields on
R3. Then for numbers a,b and functions f,

1. VapipwY = aV,Y + bV,Y.

2. Vy(aY +b2Z) = aV,Y + bV, 2.

3. Vo(fY) =v[flY(p) + f(P)V.Y.

4. VY -Z]=V,Y - Z(p) +Y(p) V. Z.



Ch3: Euclidean Geometry

3.5: Congruence of Curves

Definition 0.18. Two curves o, 3 : I — R3 are congruent if there exists an isometry F of
R? such that 3 = F(a).

Theorem 0.19. If o, 5 : I — R3 are unit-speed curves such that ke = kg and T, = £7g, then
a and B are congruent.

Corollary 0.20. Let  be a unit-speed curve in R3. Then « is a heliz if and only if both its
curvature and torsion are monzero constants.

Corollary 0.21. Let o, 3 : I — R3 be arbitrary-speed curves. If
Vo =vg >0 Ko =kg >0 Ta = 73

then the curves o and B are congruent.

Ch4: Calculus on a Surface
4.1: Surfaces in R?
Recall that a mapping is a function whose coordinates are differentiable.

Definition 0.22. A coordinate patch x : D — R? is a one-to-one reqular mapping of an open
set D of R? into R3.

Remark 0.23. Regularity of a mapping can be checked by ensuring that x, X x, # 0 everywhere.

Definition 0.24. A surface in R? is a subset M of R such that for each point p € M, there
exists a proper patch in M whose image contains a neighborhood of p.

Theorem 0.25. Let g be a differentiable real-valued function on R® and ¢ a number. Then
M : g(x,y,z) = c is a surface if the dg # 0 at every point.

4.2: Patch Computations

Definition 0.26. Denote by x,, and x, the respective partial derivatives (velocities) of the u
and v parameter curves.

Definition 0.27. A regular mapping x : D — R3 whose image lies in a surface M is called a
parametrization of the region x(D) in M.

So when we relax the one-to-one condition on a coordinate patch, we get a parametrization.

Definition 0.28. A ruled surface is a surface swept out by a straight line L moving along a
curve 3. The various positions of the generating line L are called the rulings of the surface.
Such a surface always has a ruled parametrization

x(u,v) = B(u) + vé(u)

where § points along L.



4.3: Differentiable Functions and Tangent Vectors

Definition 0.29. A function f : M — R is differentiable if for any coordinate patch X,
f(x) : D — R is differentiable in the usual Euclidean sense. Likewise we extend this to functions
F:M—R"

Lemma 0.9. If o : I — M is a curve whose route lies in the image x(D) of a single patch x,
then there exist unique differentiable functions ai,as on I such that

a(t) =x(ai(t),as(t)), Vtel

Theorem 0.30. If M C R3 is a surface and F : R* — R? is a differentiable mapping whose
image lies in M, then considered as a mapping F' : R™ — M into M, F is differentiable.

Corollary 0.31. (Smooth overlap) Ifx andy are patches in a surface M C R3 whose images
overlap then the composite functions x~ 'y and y~'x are (differentiable) mappings defined on
open sets of R2.

Corollary 0.32. Ifx andy are overlapping patches in M, then there exist unique differentiable
functions uw and v such that

y(u,v) = x(u(u,v),v(u,v))

Definition 0.33. Let p € M C R3. A tangent vector v in R? is tangent to M at p if v is a
velocity vector of some curve in M.

The set of all tangent vectors to M at a point p € M will be denoted T, M.

Lemma 0.10. If p € M and x(ug,vo) = p, then any v € T,M can be written as a linear
combination of x,(ug,vo) and x,(ug, vo).

Lemma 0.11. If M : g = c is a surface in R3, then the gradient vector field, Vg, is a non-
vanishing normal vector field on M.

Definition 0.34. Let v € T,M and f : M — R be differentiable. Then define

vif] = £(0)(0)

for all curves a in M with initial velocity v.

4.4: Differential Forms on a Surface

Definition 0.35. A 2-form n: T,M x T,M — R on a surface M is a real-valued function on
all ordered pairs of tangent vectors on M such that

1. n(v,w) is linear in v and w.
2. n(v,w) = —n(w,v).
Note that this definition implies that n(v,v) =0, Vv € T, M.

Definition 0.36. If ¢ and ¢ are 1-forms on a surface M, the wedge product ¢ N\ is the
2-form on M such that

(@A) (v, w) = o(v)Y(w) — d(w)p(v),  Vv,weT,M

In general, if £ is a p-form and 7 is a g-form,

EAn=(=1)PnA¢



Definition 0.37. Let ¢ be a 1-form on M. Then the exterior derivative d¢ of ¢ is the
2-form such that for any patch x in M,

A6k, %0) = 2o (0(x)) — 2 (6(x.)

It can be shown that this definition agrees on overlaps between patches.
Theorem 0.38. If f: M — R is a function, then d(df) = 0.
Definition 0.39. A differential form ¢ is closed if dp = 0.

Definition 0.40. A differential form ¢ is exact if ¢ = d& for some differential form &.

4.5: Mappings of Surfaces

Definition 0.41. A function F' : M — N between surfaces is differentiable if for each patch x
in M andy in N, y~'Fx is differentiable in the Fuclidean sense. F is then called a mapping
of surfaces.

Definition 0.42. Let F : M — N be a mapping of surfaces. Then the tangent map F :
TyM — TpeyN of F is defined such that if a is a curve in M with o/(0) = v € T,M, then
Fi(v) = F(a)'(0).

Definition 0.43. A mapping F : M — N with a inverse is called o diffeomorphism.

Theorem 0.44. Let F' : M — N be a mapping of surfaces and suppose that Fip : Tp(M) —
Trp)N is a linear isomorphism at some point p € M. Then there exists a neighborhood U of p
such that the restriction of F' to U is a diffeomorphism onto a neighborhood V of F(p) € M.

This implies that a one-to-one regular mapping F' of M onto N is a diffeomorphism.

When there is a diffeomorphism between two surfaces, we say that they are diffeomorphic.
Definition 0.45. Let F': M — N be a mapping of surfaces.

1. If ¢ is a I-form on N, let F*¢ be the 1-form on M such that

(F*$)(v) = p(F.v), Vv eT,M

2. If n is a 2-form on N, let F*n be the 2-form on M such that
(F*n)(v,w) =n(Fyv, Fow), Vv,weT,M
Theorem 0.46. Let F' : M — N be a mapping of surfaces and let & and n be forms on N.
Then
1. F*(§+n) = F*{+ Frn.
2. F*(§ An) = F*¢ N F'.

3. F*(dg) = d(F*€).



4.6: Integration of Forms

Definition 0.47. Let ¢ be a 1-form on M and let « : [a,b] — M be a curve segment in M.
Then define

/a b= /[a,b} o' = / " sl (1)t

Theorem 0.48. Let f be a function on M and let « : [a,b] — M be a curve segment in M
from p = a(a) to q = «a(b). Then

/ af = f(a) — £(p)

Importantly, the result above does not depend on the path chosen from p to q.

Definition 0.49. Let n be a 2-form on M and let x : R — M be a 2-segment in M. Then
define

//xn://Rx*nz/ab/cdn(xu,xv)dudv

Definition 0.50. Let x : R — M be a 2-segment in M with R the closed rectangle a < u <
b,c < v <d. The edge curves of x are the curve segments «, 8,7, such that

a(u) = x(u, c)

B(v) = x(b,v)
V(u) = x(u,d)
d(v) = x(a,v)

Definition 0.51. The boundary 0x of the 2-segment x is
Oox=a+pf—-v—-90

Theorem 0.52. (Stokes’ Theorem) If ¢ is a 1-form on M and x : R — M is a 2-segment,

then
JLoe= 0

Lemma 0.12. Let a(h) : [a,b] — M be a reparametrization of a curve segment « : [¢,d] — M
by h : [a,b] — [e,d]. For any 1-form ¢ on M,

1. If h is orientation-preserving, i.e. h(a) = ¢ and h(b) = d, then

/a(h)(b:/a(b

2. If h is orientation-reversing, i.e. h(a) = d and h(b) = c, then

Jaw?== 1



4.7: Topological Properties of Surfaces

Definition 0.53. A surface is connected if Vp,q € M, there exists a curve segment in M
from p to q.

Lemma 0.13. A surface M is compact if and only if it can be covered by the images of a finite
number of 2-segments.

Lemma 0.14. A continuous function f on a compact region R in a surface M takes on a
mazimum at some point of M.

Definition 0.54. A surface M is orientable if there exists a differentiable (or merely contin-
uous) 2-form p on M that is nonzero at every point of M.

Theorem 0.55. A surface M C R? is orientable if and only if there exists a unit normal vector
field on M. If M is connected and orientable, there are exactly two unit normals, £U.

Definition 0.56. A closed curve a in M is homotopic to a constant if there is a 2-segment
x: R — M (called a homotopy) defined on R :a < u < b,0<v <1 such that « is the base
curve of x and the other three edge curves are constant at p = a(a) = a(b).

The way to think a curve being homotopic to a constant is that when v = 0, we get the base
curve a(u). But as we increase v, the curve shrinks, maintaining the endpoints a(a) = a(b) = p.
When we set v = 1, the curve is constant at a(u) = p.

Definition 0.57. A surface M is stmply connected if it is connected and every loop in M is
homotopic to a constant.

Here a loop is a curve such that a(a) = a(b) = p but not necessarily o/(a) = o/ (b).

Lemma 0.15. Let ¢ be a closed 1-form on a surface M. If a loop o in M is homotopic to a
constant, then

[

Lemma 0.16. (Poincare) On a simply connected surface, every closed 1-form is exact.
Theorem 0.58. A compact surface in R> is orientable.

Theorem 0.59. A simply connected surface is orientable.

4.8: Manifolds

Now we construct surfaces without an embedding space. We will use the notion of an abstract
patch which is simply a one-to-one function from an open set D C R? into M.

Definition 0.60. A surface is a set M with a collection P of abstract patches satisfying:

1. The covering axiom: The images of the patches in the collection P cover M.

1

2. The smooth overlap axiom: ¥x,y € P, the composite functions, y " 'x and x 'y are

Euclidean differentiable and defined on open sets of R2.
3. Hausdorff axiom: Yp,q € M with p # q, there exist disjoint (non-overlapping) patches
x and y with p € x(D) and q € y(F).

Definition 0.61. Let « : I — M be a curve in an abstract surface M. For each t € I, the
velocity vector o/ (t) is defined such that

/i) = )

for every differentiable f : M — R.

Definition 0.62. An n-dimensional manifold M is an abstract surface where the abstract
patches map from D — M where D is an open subset of R™.




Chb5: Shape Operators

Two surfaces in R? have the same shape (i.e. “same” shape operator) iff they are congruent.

Note that in this chapter we assume that M C R? is connected and regular.

5.1: The Shape Operator of M C R3

Definition 0.63. Let Z be a vector field on M and v € T,M. Define the covariant deriva-
tive, V,Z as

(i) Let a be a curve in M with «(0) = p, /(0) = v € T,M. Then Z(a(t)) is a vector field
i a and we define

d
V.Z = 2 Z(alb))

t=0

(i) Write Z = (Z1, Z2, Z3) and define
VoZ = <U[Zl],U[ZQ],U[Zg]>

Definition 0.64. Forp € M andv € T,M we define the shape operator to be Sp(v) = —V,U.

Lemma 0.17. The shape operator is symmetric,

S(v)-w=S(w)-v, Vkv,weT,M

5.2: Normal Curvature
Lemma 0.18. If « is a curve on M, then o - U = S(d/) - &/.

Definition 0.65. Let u € T,M be a unit tangent vector. The normal curvature of M in the
u-direction is k(u) = S(u) - u.

Remark 0.66. 1. If k(u) > 0, then N(0) = U(p) so the surface M is bending toward U(p)
in the u direction.

2. If k(u) < 0, then N(0) = —U(p), so the surface M is bending away from U(p) in the u

direction.
3. If k(u) = 0, then the rate of bending is unusually small.

Definition 0.67. The maz, ki, and min, ko of the normal curvature are called the principal
curvatures of M at p. The corresponding directions are called the principal vectors /
direction.

Definition 0.68. A point p is umbilic if k1 = ko at p.
Theorem 0.69. (i) If k1 = ko, then S = ki1d at p.

(ii) If ki > ko, then there exist exactly two principal directions. Furthermore, these are
eigenvectors of S with S(u1) = kyuy and S(ug) = kaus.

Remark 0.70. Locally and after translation and rotation, M C R® may be approzimated as
z = f(x,y), where f;(0) and f,(0) correspond to principle directions at f(0,0). In terms of the
principle curvatures, we may write a quadratic approximation as

1
z = §(k1x2 + koy?)



Definition 0.71. D is a derivation on an R-algebra A if it is an operation D : A — A such
that

(i) D(af 4+ bg) = aD(f)+ bD(g).
(ii) D(fg) = D(f)g + fD(g), ¥f,g € A.

5.3: Gaussian Curvature

Definition 0.72. The Gaussian curvature of M C R3 is the real-valued function K =
det S =M.

Definition 0.73. The mean curvature of M C R? is H = %tr S.

Remark 0.74. With respect to principal vectors eq, es,

ki 0O 1
S = |: 01 ]{32:| K = kiko Hzi(kl—l—kg)

Remark 0.75. 1. If K(p) > 0, then M is bending away from its tangent plane in all tangent
directions at p and thus M locally looks like a paraboloid.
2. If K(p) <0, then M is locally saddle shaped near p.
Lemma 0.19. If v,w € T,(M) are linearly independent, then
S(v) x S(w)=K(p)vxw
S(v) xw+vxS(w)=2H(p)vxw

Lemma 0.20. In an oriented region of M, ki,ko = H = VH? — K. Thus k1 and ky are
continuous in this region but need not be differentiable depending on if H> — K = 0 (if region
contains umbilic points).

Remark 0.76. ki, ko smooth away from umbilic points.
Definition 0.77. If K =0 we say M is flat.

Definition 0.78. If H = 0 we say M is minimal.

5.4: Computational Techniques

Definition 0.79. Let x : D — M be a coordinate patch. Then define the real-valued functions,
EF=xy Xy, F=xy %y, G=%Xy Xy
l=85xy) X4y =U Xyy, m=5y) X =U Xy, n=25(xy) %Xy =U "Xy

Definition 0.80. Let v = v1xy + v9X,, and w = w1X, + woX,. Define the first fundamental
form as

v-w = Evjwy + F(viwy + vows) + Guaws

Theorem 0.81.

nl — m? Gl+ En —2Fm
Kzi =
EG — F? 2(EG — F?)

10



5.5: The Implicit Case
Lemma 0.21. Let V,W be two tangent vector fieldds on M such that V x W = Z. Then

Z-(NoZxVuZ) o Z-((VoZ) x W +V x (VwZ))

K = _
12" 21 z|?

5.6: Special Curves in Surfaces

Definition 0.82. A curve «(t) is a line of curvature or principle curve if o'(t) is a
principal vector for all t.

Lemma 0.22. Let a be a reqular curve in M C R? and U be a unit normal vector field restricted
to a. Then

1. « is principle if and only if U' and o/ are collinear at each point.

2. If o is a principle curve, then the principle curvature of M in the direction of o is

(- U)/( - ).

Lemma 0.23. Let o be a curve cut from a surface M C R3 by a plane P. If the angle between
M and P is constant along «, then o is a principle curve of M.

Theorem 0.83. For a surface of revolution, the principal directions are given by X, /||xy| and

Xo/[[%w |-
Definition 0.84. A curve a(t) is asymptotic if its normal curvature is everywhere zero.
Lemma 0.24. Let p € M C R3.

1. If K(p) > 0, then there are no asymptotic directions at p.

2. If K(p) < 0, then there are exactly two asymptotic directions at p and they are bisected
by the principle directions at angle 6 such that

tan? 6 = 7_k1 (p)

k2(p)

3. If K(p) =0, then every direction is asymptotic if p is a planar point. Otherwise there is
exactly one asymptotic direction and it is also principle.

Lemma 0.25. A ruled surface M has K < 0. K = 0 if and only if unit normal U is parallel
along each ruling of M.

Definition 0.85. A curve o C M C R? is a geodesic if o is always normal to M.

Definition 0.86. A closed geodesic is a geodesic segment « : [a,b] — M that is smoothly
closed, i.e. o'(a) = a/(b), and thus may be extended by periodicity to the whole real line.

Remark 0.87. On a surface of revolution, all meridians are geodesics.

5.7: Surfaces of Revolution

Definition 0.88. Given a profile curve a(u) = (f(u),0,g(u)) with ||/||*> > 0 and f > 0, we
can parametrize a surface of revolution as

X (u,v) = <f(u) cos v, f(u) sinv,g(u)>

11



Theorem 0.89. If a surface of revolution is minimal, then M 1is contained in a plane or
catenoid.

Lemma 0.26. For a canonical parametrization (unit-speed) of a surface of revolution,
E=1, F=0, G=/f?

and

f

K=-7%

Ch6: Geometry of Surfaces in R?

Key question: How does the shape of a surface affect its other properties?

6.1: The Fundamental Equations

Definition 0.90. A euclidean frame field on M C R? consists of three vector fields Ey1, Fs, F3
on M that are orthonormal at each point.

Definition 0.91. If E5 = U is normal to M then we call this an adapted frame field.

Lemma 0.27. There exists an adapted frame field on M iff M is orientable and exists a non-
vanishing (tangent) vector field V on M.

Definition 0.92. The connection one-forms w;; of an adapted frame field are those such
that for v € T,M,

3
VoEi =Y wij(v)E;(p)
i=1

So wij(v) = (VuE;) - Ej(p).

Write
Eq a1 a2 a13
Ey | =] a1 ax axn | =4
Ej az1 agz as3

Theorem 0.93. w = (dA) A" which implies

3

3
wij = Z(daik)(at)kj = Zdaikajk
=1

k=1

Definition 0.94. The dual one-forms of E1, Ea, E5 are one-forms 01, 62,03 such that 0;(v) =
v- Ei(p) forv e T,M. In other words,

3
v= Z 0;(v)E;
i=1
Lemma 0.28. If ¢ is a one-form then ¢ = > ¢(E;)b;.

Theorem 0.95.

91 dl‘l
0 =A| dxo =0, = Zaijdxj
03 dxs J

12



Theorem 0.96. Cartan Structural Equations:

(i) The first structural equations are

df; = Zwij A 9j
J

(i) The second structural equations are

dwij = E Wik N Wi
k

Proposition 0.97. If {E1, Es, E3} is an adapted frame field for M C R3, then

S(v) = wi3(v) E1(p) + was(v) E2(p)
Theorem 0.98. On a surface with an adapted frame field, the structural equations become

(i) First structural equations

df1 = wig N O dfs = wo1 N 01 = —wia A 01 0=df3 = w31 Nb1 + w3z Ay

(ii) Second structural equations
Gauss Equation: dwio = w1z A w3o
Codazzi Equations: dwis = wio A wog dwo3z = wa1 A w13
6.2: Form Computations
Lemma 0.29. If ¢ is a one-form then ¢ = ¢(E1)61 + ¢(E2)0s.
Lemma 0.30. If p is a two-form then p = p(Ey, E2)01 A 0a.
Lemma 0.31. (i) wis A wes = K61 A 0s.
(7i) wiz A B2 + 01 Awas = 2HEO, A 5.
Corollary 0.99.
dwia = —K601 N 6

Definition 0.100. A principal frame field on M C R3? is an adapted frame field such that
FEy and E5 are principal vectors at all points.

Lemma 0.32. If p is not umbilic, then there exists a principal frame field on a neighborhood
ofpe M.

Theorem 0.101. For principal frame fields,
Eslki] = (k1 — k2)wi2(E1)

Er[ka] = (k1 — ko)wia(Fs)

13



6.3: Some Global Theorems
Theorem 0.102. If M is a connected surface with shape operator S = 0 then M C plane.

Lemma 0.33. If every point of M is umbilic then K > 0.
Theorem 0.103. If every point of M is umbilic and K > 0 then M C sphere of radius 1/VK.
Corollary 0.104. If M C R3 compact and all-umbilic then it is an entire sphere.
Theorem 0.105. On every compact surface M C R3, there exists a point p with K (p) > 0.
Remark 0.106. There does not exist a compact surface with K < 0.
Theorem 0.107. (Hilbert) Suppose there exists a point m € M C R3 such that
(i) ki has a local max at m
(ii) ko has a local min at m
(i1i) k1 > ko at m (so m is not umbilic)
Then K(m) < 0.

Theorem 0.108. (Liebman) If M C R? is compact with K constant (and necessarily K > 0)
then M 1is a sphere of radius 1/\/?

6.4: Isometries and Local Isometries

Definition 0.109. Letp,q € M C R? andC = {a: « is a curve segment from p to q}. Then
the intrinsic distance p(p,q) is define as

— inf L
p(p,q) inf (@)

where L is the length operator.

Definition 0.110. An isometry F : M — M of surfaces in R® is a one-to-one mapping of M
onto M that preserves dot products of tangent vectors. If F is the derivative map of F, then

Fiv) - Fu(w)=v-w, VYWwweTl,M,peM
Remark 0.111. By remarks in previous chapters, an isometry F' is a diffeomorphism.

Theorem 0.112. Isometries preserve intrinsic distance. If F : M — M is an isometry of
surfaces in R3,

p(p.q) = p(F(p), F(a))
forp,q e M.
Remark 0.113. If there is an isometry between two surfaces, they are said to be isometric.

Definition 0.114. A local isometry F : M — N of surfaces is a mapping that preserves dot
products of tangent vectors.

Thus an isometry is a local isometry that is one-to-one and onto. One may show that a local
isometry is an isometry on a neighborhood of points.
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Theorem 0.115. Let F': M — N be a mapping and X : D — M be a patch. Let X = F(X) :
D — N. Then F is a local isometry if and only if

E=E, F=F, G=G

Remark 0.116. One may use this result to construct local isometries. ILe. if you have two
patches, x : D — M andy : D — N, find a function F such that F(x(u,v)) = y(u,v) for
(u,v) € D and with E=FE,F =F ,G=G.

Definition 0.117. A mapping F : M — N is conformal if there exists a real-valued function
A >0 on M such that

[ (vp)[l = A(p) [ vl

Here X\ is called the scale factor.

Note that a local isometry has A = 1, so a conformal mapping can be thought of as a generalized
isometry.

6.5: Intrinsic Geometry of Surfaces in R?

Intrinsic geometry of a surface refers to its properties which are invariant under isometry.

Lemma 0.34. Let ' : M — M be an isometry and let Ey, Ey be a tangent frame field on M.
If E1, E is the transferred frame field on M then

0, = F*(?l), 0y = F*(@g)
wiz = F*(w12)

Theorem 0.118. (Theorema egregium of Gauss) Gaussian curvature is an isometric in-
variant. Explicitly, if F': M — M is an isometry, then

K(p) = K(F(p)), Vp € M

6.6: Orthogonal Coordinates

Definition 0.119. The associated frame field Ey, E5 of an orthogonal patch (F =0)x: D — M
consists of

Xy (U, V)

P =—— A S
' E(u,v) G(u,v)

Remark 0.120. This yields dual one forms
0, =VEdu 6 =VGdv

Proposition 0.121. For an orthogonal patch,

k(). ()]
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6.7: Integration and Orientation

One can show that a coordinate patch x : D — M distorts the area of a rectangle such that
the infinitesimal area is given by vV EG — F2AuAwv. Thus the area will be found by integrating
this over certain subsets of D.

Definition 0.122. For a rectangle R : a < u < b,c < v < d with interior R° : a < u < b,c <
v <d, a 2-segment x : R — M 1is patchlike is x : R° — M 1is a patch in M.

Definition 0.123. A paving of a region P in a surface M is a finite number of patchlike
2-segments X1, ..., X whose images fill M in such a way that each point of M is in at most one
set x;(RY).

Note that an entire compact surface is always pavable and the area of a pavable region is said
to be the sum of the areas of its patchlike 2-segments.

Definition 0.124. An area form on a surface M is a differentiable 2-form p whose value on
any pair of tangent vectors is

p(v, w) = £|[v x wi|

Lemma 0.35. A surface M has an area form if and only if it is orientable. On a connected
orientable surface there are exactly two area forms, which are negatives of each other.

Definition 0.125. Let v be a 2-form on a pavable oriented region P in a surface. The integral
of v over P is

[L=x /)

where X1, ..., Xi 1s a positively oriented paving of P.

6.8: Total Curvature

Definition 0.126. Let K be Gaussian curvature of a compact surface M oriented by area form

dM. Then

//MKdM

1s the total Gaussian curvature of M.

Definition 0.127. Let M and N be surfaces oriented by area forms dM and dN. Then the
Jacobian of a mapping F : M — N 1is the real-valued function Jgp on M such that

F*(dN) = JpdM

Theorem 0.128. The Gaussian curvature K of an oriented surface M C R® is the Jacobian
of its Gauss map.

Corollary 0.129. The total Gaussian curvature of an oriented surface M C R3 equals the
algebraic area of the image of its Gauss map G : M — 3.

Corollary 0.130. Let R be an oriented region in M C R? on which
1. The Gauss map G is one-to-one and

2. Fither K >0 or K <0
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Then the total curvature of R is + area of G(R) where the sign is that of K.

Definition 0.131. The rotation operator of M is the linear operator J such that
J(v)=Uxv

Definition 0.132. Let v,w be unit tangent vectors at a point of an oriented surface M. A
number ¢ is an oriented angle from v to w if

W = cos ¢V +sin ¢J(v)

Lemma 0.36. Let o : I — M be a curve in an oriented surface M. If V and W are nonva-
nishing tangent vector fields on o, there is a differentiable function ¢ on I such that for each
t eI, ¢(t) is an oriented angle from V(t) to W(t).

Then any non-vanishing vector field V' on M determines a positively oriented frame field,

1% J(V)

Bi=—r Ey=J(F)=
VI

6.9: Congruence of Surfaces

Two surfaces M and M in R? are congruent if there is an isometry F of R? that carries M
exactly onto M.

Theorem 0.133. If F is a Euclidean isometry such that F(M) = M, then F = F|M : M —
M is an isometry. Furthermore, if M and M are suitably oriented, then F preserves shape
operators,

F.(S(v)) = 5(Fi(v))

Theorem 0.134. Let M and M be oriented surfaces in R3. Let F : M — M be an isometry
that preserves shape operators. Then M an dM are congruent. In fact, there is a Fuclidean
isometry F such that F|M = F.

Ch7: Reimannian Geometry

7.1: Geometric Surfaces

Definition 0.135. A geometric surface is an abstract surface M with an inner product on
each tangent plane which varies smoothly.

Definition 0.136. A metric tensor g on M is a function on all ordered pairs of tangent
vectors v, w at points p € M such that

gp(v7 w) = <U, w>p
Remark 0.137. The metric tensor is like a two-form but symmetric.

Note 0.138. Construction methods for geometric surfaces:

1. Conformal Change: Let h > 0 be differentiable on a region of R?, then redefine the
inner product by
v-w

RN TR
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2. Pullback: Use inner product on another geometric surface via pullback, F': M — N,
(v, w)n = (Fi(v), Fi(w)) v

3. Coordinate Description: For a coordinate patch x on an abstract surface M, defining
the functions,

E= <XU7XU> F = <Xuaxv> G = <vaxv>
defines a unique metric tensor on the image of x.

Note 0.139. As before, dual 1-forms, 61,02 are uniquely determined by 0;(E;) = 0;;, and
connection form w1y is uniquely determined by the first structural equations,

df1 = w1z N Oy dfy; = way N 64

Definition 0.140. Let {E1, Ex} and {E1, Es} be two choices of frame fields and let o be the
angle between Ei and Ey. If E; = —sinpE; + cos pEs, then the two frame fields are said
to have the same orientation. If Ey = sin@E, — cos pFEy they are said to have opposite
orientation.

Lemma 0.37. Let {E1, B>}, {E1, E2} be frame fields on the same region of M.

(i) If they have the same orientation,

Wi =wip+dp 01 NOy =01 A6y

(ii) If they have opposite orientation,

w12 = —(wi2 + dyp) 01 A Oy = —0; A B
Definition 0.141. A Reimannian manifold is a manifold furnished with a metric.

7.2: Gaussian Curvature
Need a new definition of Gaussian curvature now that we no longer have a shape operator.

Theorem 0.142. On a geometric surface M, there is a unique real-valued function K such
that for every frame field on M, the second structural equation holds,

dwig = —K601 N0y

Definition 0.143. On a geometric surface, define the Gaussian curvature to be K such that
dwis = —K601 N 0s.

Corollary 0.144. For the plane R? with metric tensor (v, w) = %, the Gaussian curvature
18

K = h(hyy + hoy) — (B2 + h2)

Proposition 0.145. Let F': M — N be a reqular mapping of a geometric surface M onto a
surface N without geometry. Suppose that whenever F(p1) = F(p2), there is an isometry Gia
from a neighborhood of p1 to a neighborhood of pa such that

FGo=F, Gi2(p1) = p2

Then there is a unique metric tensor on N that makes F a local isometry.
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7.3: Covariant Derivative

Lemma 0.38. Assume there exists a covariant derivative V on M which is linear, Leibnizian
and such that wi2(V) = (Vv E1, E3), then V obeys the connection equations,

VyEr =wia(V)E2  VyEy=wp(V)E
Furthermore, for a vector field W = f1E1 + foFs,

VW = (VIfi] + fawar (V) E1 + (VIfo] + fiw12(V)) Ez
called the covariant derivative formula.

Theorem 0.146. On each geometric surface M there exists a unique covariant derivative V
in the linear and Leibnizian properties satisfying wi2(V) = (Vy E1, Es).

Definition 0.147. A wvector field V on a curve a in a geometric surface is parallel provided
its covariant derivative vanishes, V' = 0.

Note 0.148. ForY = fiE1 + foEs along curve a, we write
Y' = (fi + fowa1(a'))E1 + (fa + fiwia(e)) Es

Lemma 0.39. Let o be a curve in a geometric surface M, and let v be a tangent vector at
p = a(tg). Then there is a unique parallel vector field V' on « such that V(ty) = v.

Remark 0.149. For a parallel vector field V' on o, we say a(t) is gotten from v at p = a(to)
by parallel transportation along «.

Definition 0.150. If « : [a,b] — M is a closed curve in the domain of a frame field, ¢’ +
wiz2(a’) =0 leads us to define the holonomy angle 1, of « as

Yo = p(b) — p(a) = — / w12

(07

Lemma 0.40. (Connection between covariant derivatives on a geometric surface and R3) If V
and W are tangent vector fields on a surface M in R3, then

1. VyW is the component of VW tangent to M.
2. If S is the shape operator of M derived from a unit normal U, then
VyvW = VyW + (S(V)- W)U

7.4: Geodesics

Definition 0.151. A curve in a geometric surface is a geodesic provided its acceleration is
!
zero, v = 0.

Remark 0.152. The velocity of a geodesic is parallel, i.e. they never turn.
Remark 0.153. As acceleration is preserved by isometry, geodesics are isometric invariants.

Theorem 0.154. Write o' = A1E; + AsEs where Ay, Ay are real-valued functions. Let x be
an orthogonal patch in a geometric surface M. A curve a(t) = x(a1(t),az2(t)) is a geodesic of
M iff

1
Ay =af + oY) (Eua’12 +2E,aal — Gua/22> =0
1
Ay = al + Ye < — Bya? +2G,ad)y + Gva’22> =0

19



Theorem 0.155. Given a tangent vector v to M at a point p, there is a unique geodesic ~y
defined on an interval I around 0 such that v(0) = pand 7' (0) = v.

Definition 0.156. A geometric surface is complete provided every mazximal geodesic in M is
defined on the whole real line R.

Lemma 0.41. Let Ey, E5 be a frame field and let « be a constant speed curve such that o/ and
E5 are never orthogonal. If Ay =0 then Ay =0, hence a is a geodesic.

Definition 0.157. Let a be a unit-speed curve in M C R3, U be a unit normal vector field
restricted to o, and V = U x &. Then the geodesic curvature k, of a is the function such
that

o =KV 4+ kU
where k = S(T) - T is the normal curvature of M in the T direction.

Corollary 0.158. Let 8 be a unit speed curve in a region oriented by a frame field Ev, Es. If
© is an angle function from Ey to 3’ along 3, then

d
kg = dff + wi2(8')

Lemma 0.42. A regular speed curve o in M is a geodesic if and only if o has constant speed
and geodesic curvature, kg = 0.

7.5: Clairaut Parametrizations

Definition 0.159. A Clairaut parametrization x : D — M is an orthogonal parametrization
for which E and G depend only on u. Le. F =0, B, =G, =0.

Lemma 0.43. If x is a Clairaut parametrization, then
1. All the u-parameter curves are pregeodesics.
2. A v-parameter curve u = ug s a geodesic iff Gy (ug) = 0.

Theorem 0.160. Let a = x(aq,a2) be a unit-speed geodesic with x a Clairaut parametrization.
If ¢ is the angle from x, to o then the function

c=G(a1)ay = \/G(ar)sing
is constant along a.. Hence o cannot leave the region where G > 2.

Definition 0.161. ¢ = c¢(«) from above is called the slant of a as it determines the angle ¢ at
which « cuts across the meridians.

Proposition 0.162. If x is a Clairaut parametrization, then every geodesic « such that o' is
never orthogonal to meridians can be parametrized as f(u) = x(u,v(u)) where

@ 4 E
du VGVG = 2
with ¢ the slant of a. Hence by the fundamental theorem of calculus,

v e/Edt

v(u) = v(ug) = . NeNerr:
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7.6: Gauss-Bonnet Theorem

Definition 0.163. Let « : [a,b] — M be a reqular curve segment in an oriented geometric
surface M. The total geodesic curvature of o is

s(b) ds
/aﬁgds:/s(a) ﬁg(s(t))adt

Lemma 0.44. Let « : [a,b] = M be a regular curve segment in a region of M oriented by a
frame field Eq, Eo. Then

ngds = ¢(b) — p(a) + /awm

where ¢ is an angle function from Ei to o along o and wyo is the connection form of Eq, E5.

Definition 0.164. Letx : R — M be a one-to-one reqular 2-segment with vertices p1, P2, P3, P4-
The exterior angle €; of x at p; (1 < j <4) is the turning angle at p; derived from the edge
curves «, 3, =7, =0, ... in order of occurrence in x. The interior angle l; at p; is ™ —¢;.

Theorem 0.165. Let x : R — M be a one-to-one regular 2-segment in a geometric surface M.
If dM s the area form determined by x, then

//KdM+/ kgds + €1+ €2 +e3+e4 =27
x ox

where € is the exterior angle at the vertex p; of x (1 < j < 4). This formula can be written in
terms of interior angles as

//KdM+/ kgds =11 + 1o+ 13+ 14 — 27
X ox

Definition 0.166. A rectangular decomposition D of a surface M is a finite collection of
one-to-one regular 2-segments X1, ...,Xy whose images cover M in such a way that if any two
intersect, they do so in either a single common vertex or a single common edge.

Theorem 0.167. Fvery compact surface M has a rectangular decomposition.

Theorem 0.168. If D is a rectangular decomposition of a compact surface M, let v, e, and f
be the number of vertices, edges and faces in D. Then the integer v—e+ f is the same for every
rectangular decomposition of M. This integer x(M) is called the Euler characteristic of M.

Definition 0.169. X[h| is the surface obtained by taking a sphere and adding h handles to it.

Theorem 0.170. If M is a compact, connected, orientable surface, there is a unique integer
h > 0 such that M s diffeomorphic to ¥[h].

Corollary 0.171. Compact orientable surfaces M and N have the same Euler characteristic
iff they are diffeomorphic.

Theorem 0.172. (Gauss-Bonnet) The total Gaussian curvature of a compact orientable geo-
metric surface M is 2w times its FEuler characteristic:

/ /M KdM = 2my(M)

Note 0.173. This links the topology and geometry of a surface, implying that the total Gaussian
curvature is a topological invariant.
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7.7: Applications of Gauss-Bonnet

Definition 0.174. An oriented polygonal region P in a surface M is a (necessarily compact)
oriented region furnished with a positively oriented rectangular decomposition X1, ...,Xj.

Definition 0.175. A boundary segment of P is a curve segment [ that is an edge curve of
exactly one of the rectangles x;(R;). For simplicity we add the requirement that a vertex of the
decomposition cannot belong to more than the boundary segments.

Definition 0.176. The oriented boundary OP of an oriented polygonal region P is the formal
sum of the simple closed, oriented polygonal curves B; described above:

OP =Pr+ -+ B

Theorem 0.177. (Generalized Stokes’ Theorem) If ¢ is a 1-form on an oriented polygonal
region P, then

Jho=f

In particular, if P is an entire compact oriented surface M, then ffM dp = 0.

Corollary 0.178. The following properties of a compact orientable surfaces surface are equiv-
alent:

1. There is a non-vanishing tangent vector field on M.
2. x(M)=0
3. M is diffeomorphic to a torus.

Theorem 0.179. If P is an oriented polygonal region in a geometric surface, then
// KdM+/ mgds+25j = 2mx(P)
P oP

where Y €; is the sum of the exterior angles of all the closed boundary curves comprising OP.

Corollary 0.180. If A is a triangle in an oriented geometric surface M, then
// KdM+/ Kgds =21 — (e1+ea+e3)=(Li+la+13) —7
A [o7AN
Definition 0.181. A point p is an isolated singular point of a vector field V is V is non-
vanishing and differentiable on some neighborhood N of p, except at the point p itself.

Definition 0.182. Let « : [a,b] — C be a parametrization of the boundary C as the oriented
boundary 0D of D. Let ¢ = ((X,V) be an angle function from X, to Vy (these vector fields
restricted to «) for some smooth vector field X with no singularities anywhere in D. Then
©(b) — ¢(a) is called the total rotation and is a multiple of 2.

Definition 0.183. The index of V at p is the integer

. _ () — ¢(a)
nd(V,p) = = ——

Theorem 0.184. (Poincare-Hopf) Let V' be a vector field on a compact oriented surface M. If
V' is differentiable and non-vanishing except at isolated singular points p1, ..., pr then the Euler
characteristic of M is the sum of their indices

K
(M) =3 ind(V, py)
=1
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